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1 Introduction

Volatility is a core concept in modern finance theory, including in asset pric-

ing, portfolio allocation or risk management. Literature has evolved from a

constant volatility (Merton, 1969; Black and Scholes, 1973) to a time-varying

fashion (e.g, Andersen and Bollerslev, 1997), and stochastic volatility models

are also widely used. Stochastic volatility models are heavily used in both

academia and industry (e.g., Hull and Whilte, 1987; Heston, 1993; Bates,

1996; Ghysels, Harvey, and Renault, 1996; Jarrow, 1998; Duffie, Pan, and

Singleton, 2000). However, it is not easy to estimate the stochastic volatil-

ity model. For instance, the Gaussian quasi-maximum likelihood estimation

(QMLE) approach of Harvey, Ruiz, and Shephard (1994), seems appealing

due to its simplicity. Nevertheless, the problem embedded in these line of

estimation is that standard volatility proxies such as squared returns are con-

taminated by highly non-Gaussian error.

Among financial practitioner, it is very useful if we can know the future distri-

bution in advance, such as VaR (Value-at-Risk) analysis, expected shortfall

(ES) for risk management, break-even point for option traders. The classical

1



way to estimate the return distribution or interval rely on the estimation of

volatility, then transfer to the confidence interval with an assumption on the

distribution (Normality, for example). Nevertheless, returns are not normally

distributed, forecast return confidence interval through volatility is thus bi-

ased.

In the last decades, a number of range based estimators have been proposed.

Price range, which is defined as the difference in th high and low price ob-

served during a time interval, is more efficient than return based estimators

(e.g., Rogers and Satchell, 1991; Alizadeh, Brandt and Diebold, 2002 and

Bali and Weinbaum 2005). However, range based estimators are proposed

with assumption that the price dynamic is continuous and lognormally dis-

tributed. These estimators may be more efficient and unbiased than return-

based estimators, however, it can be the case in reality that the prices are

not observed continuously.

There is a growing literature about extracting information from option mar-

ket to forecast asset returns and volatilities. Bakshi and Madan (2000) pro-

pose a model-free method to estimate the risk-neutral moments of underlying

from option prices. For instance, Conrad, Dittmar and Ghysels (2013) use

option prices to estimate ex ante higher moments of the underlying indi-

vidual securities risk-neutral returns distribution. They find that securities

risk-neutral volatility, skewness, and kurtosis are strongly related to future

returns. Many studies have demonstrated that option-implied volatility is a

strong predictor of the future volatility in equity markets. Classic contribu-

tions include Christensen and Prabhala (1998), and Blair, Poon, and Taylor

(2001). The predictive power of option-implied equity volatility has been

confirmed recently by Busch, Christensen and Nielsen (2008), who compare

option-implied forecasts with state-of-the-art realized volatility forecasts.
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In this paper, I propose a ranger estimator similar to range-based volatil-

ity estimator, with intraday minute data. Then, I use VIX data as variable

to forecast the future realized range, the correlation for the whole period is

0.73, while the R-square is 0.55, indicating a very well out-of-sample fitting.

It also dominates historical based volatility estimation method.

2 Range Estimator

It is very useful for financial practitioners, if they can know the future distri-

bution in advance, such as VaR (Value-at-Risk) analysis, expected shortfall

(ES) for risk management, break-even point for option traders. For lots

of option trading strategies, underlying price confidence interval is critical,

for instance, choosing different call and put to short a strangle requires the

bet/believe on the break-even point, in another word, the confidence inter-

val. This knowledge might not be so interesting for a stock trader, however,

for derivative traders (who are dealing with more sophisticated instruments),

they are profitable. In addition, people in risk management area are also in-

terested in price/return distribution, in their word, tail-risk. The philosophy

of risk management lies in the Black-Swan, historically, those low proba-

bility events crash the industry, and cause significant loss. Thus, with the

knowledge of future distribution, risk management team could produce more

reliable numbers. The classical way to estimate the return distribution or

interval rely on the estimation of volatility, then transfer to the confidence

interval with an assumption on the distribution (Normality, for example).

Nevertheless, returns are not normally distributed, forecast return confidence

interval through volatility is thus biased.
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2.1 Range Estimator Construction

Denote P0 the price of the security at time t0, Pi the price of the security

at time ti, where i = 1, 2, ...N . For a given period (can be a day, a week

or a month depending on the data frequency), denote the range of the price

dynamics with respect to the initial price P0:

Ci =
Pi
P0

, i = 1, 2, ...N (1)

Sort Ci from low to high, for a given confidence level α, calculate the confi-

dence interval CHL = Csorted
1−α − Csorted

α , for instance, if we want to calculate

the 90% confidence interval for the future distribution, we can calculate the

difference between 95 percentile sorted value and 5 percentile sorted value,

CHL
90%=Csorted

95% − Csorted
5% . Compare to the classic range estimator, which usu-

ally defined as the difference of lowest and highest value, a confidence inter-

val could be less affected by the extreme values—- the sudden change in the

market (might recover very soon), indicates a more fruitful information for

traders.

2.2 Data and Empirical Results

The data are minutes data of SPY (S&P500 ETF) price, range from 2010.06

to 2017.05. For each trading day, we have 405 observations. The data is from

CBOE.

[insert Figure 1 here]

[insert Table 2 here]

Figure 1 plots the 80%, 90%, 95% and 99% percentile PREs for one week

distribution. As the figure shows, it hits high level during second half of
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2011, when there are fears of contagion of the European sovereign debt crisis

to Spain and Italy, as well as concerns over France’s current AAA rating,

concerns over the slow economic growth of the United States and its credit

rating being downgraded. Among different percentile PREs, the pattern is

quite similar, correlations between different PREs are almost 1, indicating its

consistence. Table 1 summarize the statistics for the PREs with different per-

centiles. The means and medians are increasing monotonically as expected.

Results of skewness and kurtosis showing the distribution of PREs are highly

non-normal. For instance, the mean of PRE with 99 percentile is 0.0234, it

indicates on average, the 99% of the one week SPY minute price is deviated

within 2.34% of the SPY Monday open price (defined as the S0).

2.3 Correlation with VIX

There is a growing literature about extracting information from option mar-

ket to forecast asset returns and volatilities. Bakshi and Madan (2000) pro-

pose a model-free method to estimate the risk-neutral moments of underlying

from option prices. Classic contributions include Christensen and Prabhala

(1998), and Blair, Poon, and Taylor (2001). The predictive power of option-

implied equity volatility has been confirmed recently by Busch, Christensen

and Nielsen (2008), who compare option-implied forecasts with state-of-the-

art realized volatility forecasts. Option, especially OTM (out-of-the-money

option) contains unique information about the market expectation of the un-

derlying future movements. When investors/institution traders perceive (or

know in advance due to asymmetric information) that certain event is going

to happen, we could observe money flows into OTM options, due to the high

leverage effect. These money flows are then push the IV (implied volatility)

to a higher level, in the end, affect the VIX. One could take the advantage
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of observing VIX to get aggregate market ”emotion”. Consequently, it is

interesting to see whether/how these information can forecast future.

[insert table 3 here]

Figure 3 plots the Monday VIX open price with the subsequent week price

distribution, with different percentile. The correlations of VIX price with

different percentile distribution remains high for the whole period, range from

0.65 to 0.75, indicate that VIX is indeed a forward-looking measurement, at

least for this percentile range estimator. Its correlation is actually increase as

the percentile increase, showing the ability to capture/forecast the tail risk.

3 Forecast Percentile Range

There is no doubt that future distribution information is crucial in the finance

world, both for academia and industry. The percentile range estimator (PRE)

could be applied in both trading and risk management, thus a decent forecast

method is appealing. The classical method is to first estimate the volatil-

ity, then transfer to the confidence interval based on the assumption of the

distribution (normality, for example). However due to highly non-Gaussian

feature, this kind of transformation causes biased estimator. In this section,

I propose a new simple regression based model to fit and forecast FPE, other

benchmark methods are also used for comparison.

3.1 VIX as the variable to estimate PRE

In the previous section, I show that the realized percentile range is highly

correlated with VIX price, to be more precise, the one week realized percentile
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range is over 70% correlated with the Monday open price of VIX. Naturally,

given this level of correlation, we can use a regression model to estimate the

relationship, and forecast accordingly. I use OLS to estimate the following

regression,

CHL
α,t,T = C + b1 · V IXt + b2 · V IXt−1 (2)

Table 2 summarize the statistic results and R-square for the fitted values.

The fitted PREs also show high non-normality, with skewness up to 2 and

kurtosis is around 8. Both R squares and adjusted R squares are at high level,

more than 50% for all percentiles, indicate very good model fit. Interest to

notice, the R-square increases as the chosen percentile increases, showing the

potential to capture the edge cases.

3.2 Forecast PRE using VIX

In the previous section, the results showing that with VIX variable (and

lagged one), the linear model could provide very good fitness. In order to

forecast PRE, we need ex-ante coefficients, I use moving window estima-

tion strategy, as its popularity among the literature. The coefficients are

estimated using backward 256 weeks observation (approximately 5 years to

generate stable estimates):

CHL,forecast
α,t,T = Ct−256,t + b1t−256,t · V IXt + b2t−256,t · V IXt−1. (3)

3.3 Alternative Methods

The alternative method is to estimate the volatility and then transfer to

distribution interval with an assumption on the distribution itself (usually

normality). As a benchmark method, I use rolling window to estimate his-
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torical volatility, then apply the normality assumption, a 90% distribution

interval is equal to µ ± 1.5σ. We can further assume that the weekly mean

of deviation from the original price (S0) is 0, then the 90 percentile range

estimator is equal to 3σ. Figure 6 plots the comparison between VIX based

forecast PREs, volatility transferred based PREs and realized PREs. As

the figure shows, the volatility transferred based method generates biased

estimates, they are over estimated through the whole time period. Another

method can be using realized volatility (RV) and/or PREt−1 as variables.

Table 4 summarizes the panel regressions for estimating PREt. PREt is the

realized PRE (Percentile Range Estimator) for the week (Monday to Friday),

V IXt stands for the Monday open price of VIX index. V IXt−1 is the last

Monday (t-1) open price of VIX index. RVt−1 is the last week realized volatil-

ity calculating using minute data. PFEt−1 stands for the realized PRE of

last week. It shows that the both historical and option-implied methods work

well alone, although the fitting performance of using V IXt and V IXt−1 as

variables is much better than the historical ones. The adj.R2 of Regression

(1) is more than doubled comparing to Regression (2) and (3). This is intu-

itive, since we believe the VIX index price on Monday should not only reflect

the performance of S&P500 during last week, but also absorb the informa-

tion during weekends, to form a rational expectation of the market for the

following week. Interestingly, if we put historical metrics RVt−1 and PFEt−1

together with the option-implied ones (V IXt, V IXt−1) in Regression (5) and

(6), the adj.R2s do not increase, RVt−1 and PFEt−1 are now insignificant,

showing not value is added by incorporating historical metrics.

8



References

[1] Baker M, Bradley B, Wurgler J. Benchmarks as limits to arbitrage: Un-

derstanding the low-volatility anomaly[J]. Financial Analysts Journal,

2011, 67(1): 40-54.

[2] Bakshi G, Madan D. Spanning and derivative-security valuation[J].

Journal of financial economics, 2000, 55(2): 205-238.

[3] Bakshi G, Kapadia N, Madan D. Stock return characteristics, skew laws,

and the differential pricing of individual equity options[J]. Review of

Financial Studies, 2003, 16(1): 101-143.

[4] Blair B J, Poon S H, Taylor S J. Modelling S&P 100 volatility: The

information content of stock returns[J]. Journal of banking and finance,

2001, 25(9): 1665-1679.

[5] Buss A, Vilkov G. Measuring equity risk with option-implied correla-

tions[J]. Review of Financial Studies, 2012, 25(10): 3113-3140.

[6] Christensen B J, Prabhala N R. The relation between implied and real-

ized volatility[J]. Journal of Financial Economics, 1998, 50(2): 125-150.

[7] Christensen B J, Nielsen M , Zhu J. Long memory in stock market

volatility and the volatility-in-mean effect: the FIEGARCH-M model[J].

Journal of Empirical Finance, 2010, 17(3): 460-470.

[8] Christoffersen P, Fournier M, Jacobs K, et al. Option-Based Estimation

of the Price of Co-Skewness and Co-Kurtosis Risk[J]. Available at SSRN

2656412, 2015.

[9] Conrad J, Dittmar R F, Ghysels E. Ex ante skewness and expected stock

returns[J]. The Journal of Finance, 2013, 68(1): 85-124.

9



[10] Fama E F, French K R. The crosssection of expected stock returns[J].

the Journal of Finance, 1992, 47(2): 427-465.

[11] Kraus A, Litzenberger R H. Skewness preference and the valuation of

risk assets[J]. The Journal of Finance, 1976, 31(4): 1085-1100.

[12] Lakonishok J, Shapiro A C. Systematic risk, total risk and size as de-

terminants of stock market returns[J]. Journal of Banking and Finance,

1986, 10(1): 115-132.

[13] Merton R C. On estimating the expected return on the market: An

exploratory investigation[J]. Journal of financial economics, 1980, 8(4):

323-361.

10



Appendices

A Appendix: Model Free Option-Implied Mo-

ments

Bakshi, Carr and Madan (2000) show that any twice continuously differ-

entiable fnct, H(ST ), of terminal price ST , can be replicated by a unique

position in the risk-free, stocks and European options.

H[S] = H[S̄]+(S−S̄)Hs[S̄]+

∫ ∞
S̄

Hss[K](S−K)+dK+

∫ s̄

0

Hss[K](K−S)+dK

(4)

The prices of these contracts are

EQ
t {e−rτH[S]} = (H[S̄]− S̄Hs[S̄])e−rτ +Hs[s̄]S(t)+∫ ∞
s̄

Hss[K]C(t, τ ;K)dK +

∫ S̄

0

Hss[K]P (t, τ ;K)dK.
(5)

where Ct(τ,K) and Pt(τ,K) are prices of the European call and put options

with time to maturity τ and strike price K. As a result, we can calculate

the prices of derivatives given the price of the risk free zero coupon bond

r, the spot price of the underlying, S̄, and a series of OTM calls and puts.

Since our main interest would be underlying return distribution, consider the

function H[S]):

H[St+τ ] = R2
t+τ = (lnSt+τ − lnSt)2 (6)

Then the risk-neutral variance, skewness and kurtosis of equity returns
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could be computed based on the following expressions.

EQ0

[
e−rT (

ST − S0

S0
)2
]

=
2

s2
0

[ ∫ S0

0
P0(T,X)dX +

∫ ∞
S0

C0(T,X)dX
]

(7)

EQ0

[
e−rT (

ST − S0

S0
)3
]

=
6

S2
0

[ ∫ S0

0

(X − S0

S0

)
P0(T,X)dX+

∫ ∞
S0

(X − S0

S0

)
C0(T,X)dX

]
(8)

EQ0

[
e−rT (

ST − S0

S0
)4
]

=
12

S2
0

[ ∫ S0

0

(X − S0

S0

)2
P0(T,X)dX+

∫ ∞
S0

(X − S0

S0

)2
C0(T,X)dX

]
(9)

Since there is no continuity of strike prices, we can approximate the integrals using

cubic spline. For a given maturity, I interpolate implied volatilities across different

moneyness level (K/S) to obtain a continuum of implied volatilities. Furthermore,

the implied volatility of the highest or lowest available strike price is used when

moneyness below and above the available moneyness level in the market. More

precisely, for moneyness level smaller than 1 (K/S < 1), the corresponding implied

volatilities are used to generate put option prices, while for moneyness level larger

than 1 (K/S < 1), the corresponding implied volatilities are used to generate call

option prices.
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Figure 1: Percentile Range Estimator
Figure 1 plots the 90% percentile range estimator for one week SPY distribution. Denote P0 the price of

the security at time t0, Pi the price of the security at time ti, where i = 1, 2, ...N . For a given period (can

be a day, a week or a month depending on the data frequency), denote the range of the price dynamics

with respect to the initial price P0: Ci = Pi
P0
, i = 1, 2, ...N . Sort Ci from low to high, for a given confidence

level α, calculate the confidence interval CHL = Csorted1−α −Csortedα , for instance, if we want to calculate the

90% confidence interval for the future distribution, we can calculate the difference between 95 percentile

sorted value and 5 percentile sorted value, CHL
90%

=Csorted
95%

− Csorted
5%

. The data are minutes data of SPY

(S&P500 ETF) price, range from 2010.06 to 2017.05. For each trading day, we have 405 observations.

The data is from CBOE.
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Table 1: Summary Statistics for PRE

Table 1 shows the different percentile range estimators for one week SPY distribu-

tion. Denote P0 the price of the security at time t0, Pi the price of the security at

time ti, where i = 1, 2, ...N . For a given period (can be a day, a week or a month

depending on the data frequency), denote the range of the price dynamics with re-

spect to the initial price P0: Ci = Pi
P0
, i = 1, 2, ...N . Sort Ci from low to high, for a

given confidence level α, calculate the confidence interval CHL = Csorted1−α −Csortedα ,

for instance, if we want to calculate the 90% confidence interval for the future dis-

tribution, we can calculate the difference between 95 percentile sorted value and

5 percentile sorted value, CHL90%=Csorted95% − Csorted5% . The data are minutes data of

SPY (S&P500 ETF) price, range from 2010.06 to 2017.05. For each trading day,

we have 405 observations. The data is from CBOE.

PRE(80%) PRE(90%) PRE(95%) PRE(99%)
mean 0.0178 0.0201 0.0218 0.0234

median 0.0149 0.0173 0.0188 0.0201
volatility 0.0113 0.0121 0.0128 0.0135
skewness 1.6364 1.6065 1.6145 1.6917
kurtosis 6.4365 6.3578 6.3623 6.8715
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Table 2: Summary Statistics for fitted PRE

Table 2 reports the summary statistics for fitted percentile range estimator
(PRE) for one week SPY distribution with different percentiles. PRE is
defined in the following way: Denote P0 the price of the security at time
t0, Pi the price of the security at time ti, where i = 1, 2, ...N . For a given
period (can be a day, a week or a month depending on the data frequency),
denote the range of the price dynamics with respect to the initial price P0:
Ci = Pi

P0
, i = 1, 2, ...N . Sort Ci from low to high, for a given confidence level

α, calculate the confidence interval CHL = Csorted
1−α −Csorted

α . The fitted PREs
are estimated through regression CHL

α,t,T = C + b1 · V IXt + b2 · V IXt−1. The
data are minutes data of SPY (S&P500 ETF) price, range from 2010.06 to
2017.05. For each trading day, we have 405 observations, which constitute
2025 observations per week. The data is from CBOE.

PRE(80%) PRE(90%) PRE(95%) PRE(99%)
mean 0.0181 0.0202 0.0218 0.0233

median 0.0154 0.0174 0.0188 0.0201
volatility 0.0089 0.0094 0.01 0.0104
skewness 2.1785 2.1639 2.1496 2.1406
kurtosis 8.3723 8.347 8.3232 8.3185
R square 0.503 0.5296 0.5453 0.5566
adj. Rˆ2 0.5131 0.5281 0.544 0.5553
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Table 3: My caption

Table 3 reports the summary statistics for fitted percentile range estimator
(PRE) for one week SPY distribution with different percentiles. PRE is
defined in the following way: Denote P0 the price of the security at time
t0, Pi the price of the security at time ti, where i = 1, 2, ...N . For a given
period (can be a day, a week or a month depending on the data frequency),
denote the range of the price dynamics with respect to the initial price P0:
Ci = Pi

P0
, i = 1, 2, ...N . Sort Ci from low to high, for a given confidence level

α, calculate the confidence interval CHL = Csorted
1−α −Csorted

α . The fitted PREs
are estimated through regression CHL

α,t,T = C + b1 · V IXt + b2 · V IXt−1. The
data are minutes data of SPY (S&P500 ETF) price, range from 2010.06 to
2017.05. For each trading day, we have 405 observations, which constitute
2025 observations per week. The data is from CBOE.

PRE(80%) PRE(90%) PRE(95%) PRE(99%)
mean 0.0179 0.0201 0.0216 0.023

median 0.0159 0.0179 0.0192 0.0205
volatility 0.0075 0.0082 0.0086 0.009
skewness 1.9272 1.9187 1.8908 1.8808
kurtosis 7.1501 7.0968 6.9574 6.9656

MSE 0.0205 0.0224 0.0253 0.0295
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Table 4: Table 4: Panel Regressions for Different Variables

Table 4 summarizes the panel regressions for estimating PREt. PREt is
the realized PRE (Percentile Range Estimator) for the week (Monday to
Friday), V IXt stands for the Monday open price of VIX index. V IXt−1 is
the last Monday (t-1) open price of VIX index. RVt−1 is the last week realized
volatility calculating using minute data. PFEt−1 stands for the realized PRE
of last week. PRE is defined in the following way: Denote P0 the price of the
security at time t0, Pi the price of the security at time ti, where i = 1, 2, ...N .
For a given period (can be a day, a week or a month depending on the data
frequency), denote the range of the price dynamics with respect to the initial
price P0: Ci = Pi

P0
, i = 1, 2, ...N . The data are minutes data of SPY (S&P500

ETF) price, range from 2010.06 to 2017.05. For each trading day, we have
405 observations, which constitute 2025 observations per week. The data is
from CBOE.

PREt(80%)
(1) (2) (3) (4) (5) (6)

V IXt
0.180***
(11.36)

0.158***
(12.56)

0.180***
(11.07)

V IXt−1
-0.039***

(-2.56)
-0.045***

(-2.41)

RVt−1
0.532***

(8.84)
0.304***

(4.38)
0.084

(-1.29)
-0.004

(-0.055)

PREt−1
0.475***

(9.77)
0.334***

(5.81)
0.016
(0.29)

0.054
(0.98)

observation 328 328 328 328 328 328
adj. Rˆ2 51.3% 19.1% 22.4% 26.5% 50.4% 51.2%
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Figure 2: Percentile Range Estimator
Figure 2 plots the 90% percentile range estimator for one week SPY distribution. Denote P0 the price of

the security at time t0, Pi the price of the security at time ti, where i = 1, 2, ...N . For a given period (can

be a day, a week or a month depending on the data frequency), denote the range of the price dynamics

with respect to the initial price P0: Ci = Pi
P0
, i = 1, 2, ...N . Sort Ci from low to high, for a given confidence

level α, calculate the confidence interval CHL = Csorted1−α −Csortedα , for instance, if we want to calculate the

90% confidence interval for the future distribution, we can calculate the difference between 95 percentile

sorted value and 5 percentile sorted value, CHL
90%

=Csorted
95%

− Csorted
5%

. The data are minutes data of SPY

(S&P500 ETF) price, range from 2010.06 to 2017.05. For each trading day, we have 405 observations.

The data is from CBOE.
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Figure 3: Percentile Range Estimator
Figure 7 plots the 90% percentile range estimator for one week SPY distribution and Monday VIX open

price. The correlation between VIX price and subsequent realized PRE is also given. The data are minutes

data of SPY (S&P500 ETF) price, range from 2010.06 to 2017.05. For each trading day, we have 405

observations. The data is from CBOE.
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Figure 4: Percentile Range Estimator
Figure 6 plots the 90% percentile range estimator for one week SPY distribution and Monday VIX open

price. The correlation between VIX price and subsequent realized PRE is also given. The data are minutes

data of SPY (S&P500 ETF) price, range from 2010.06 to 2017.05. For each trading day, we have 405

observations. The data is from CBOE.
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Figure 5: Percentile Range Estimator
Figure 5 plots the fitted percentile range estimator (PRE) for one week SPY distribution and realized

PRE. The fitted PREs are estimated through regression CHLα,t,T = C + b1 · V IXt + b2 · V IXt−1 with 80

and 90 percentile during the whole sample period. The data are minutes data of SPY (S&P500 ETF)

price, range from 2010.06 to 2017.05. For each trading day, we have 405 observations, which constitute

2025 observations per week. The data is from CBOE.
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Figure 6: Percentile Range Estimator
Figure 6 plots the fitted percentile range estimator (PRE) for one week SPY distribution and realized

PRE. The fitted PREs are estimated through regression CHLα,t,T = C + b1 · V IXt + b2 · V IXt−1 with 80

and 90 percentile during the whole sample period. The data are minutes data of SPY (S&P500 ETF)

price, range from 2010.06 to 2017.05. For each trading day, we have 405 observations, which constitute

2025 observations per week. The data is from CBOE.
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