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Abstract

Empirical research has argued that option returns are anomalous based
on standard return metrics, such as average returns or Sharpe ratios.
Other studies treat this return anomaly as evidence that skewness
preference is priced. Recent theoretical developments predict a nega-
tive relationship between total skewness and average returns. Based
on the newly developed β-Heston model, I study the cross-section of
equity option returns to investigate the out-of-the-money option mis-
pricing issue. I find that by comparing historical statistics to those
generated by the model, the puzzling out-of-the-money put returns are
consistent with the β-Heston model estimation. I also find that the
well documented skewness preference is not priced in equity options.
Additionally, I provide evidence that casts doubt on the hypothesis of
market imperfections and constrained financial intermediaries.

1 Introduction

Recent studies have concluded that options are mispriced in the sense that

certain option returns are excessive relative to their risks. For instance, Bon-

darenko (2003) reports that average at-the-money (ATM) put returns are

-40% per month, and deep out-of-the-money (OTM) put returns are -95%

per month for the S&P 500 index. Furthermore, standard return-based mea-

sures such as CAPM alphas or Sharpe ratios are statistically significant and

larger than those of the underlying index.

However, we should pay attention to certain conditions when applying

these metrics. Option returns are highly non-normal, and these metrics as-

sume normality, which is inappropriate. Additionally, average put returns
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should be negative due to the leverage inherent in options and the presence

of higher moment risk premium. To alleviate these issues, Broadie, Chernov,

and Johannes (2009) use option pricing models as a benchmark to assess ev-

idence for index option mispricing. They find that average returns, CAPM

alpha, and Sharpe ratios for deep OTM put returns are statistically insignif-

icant when compared to the Black-Scholes model.

Another strand of the literature treats this mispricing (overpriced put

options) phenomenon as evidence that skewness preference is priced. Re-

cent studies show that standard rational asset pricing models have difficulty

explaining many of the basic empirical facts about financial markets. Exper-

imental economists find that individuals deviate from standard utility theory

when making choices in the face of uncertainty. For instance, investors prefer

skewness or lottery-like features in asset return distributions, and these pref-

erences influence asset prices in equilibrium. Based on these theories, Boyer

and Vorkink (2014) find that total skewness is priced: portfolios of short-term

options with high ex ante skewness lose approximately 10% to 50% per week

on average compared to those with low ex ante skewness. Bali and Murray

(2013) investigate the pricing of risk-neutral skewness in the stock options

market by creating skewness assets (comprised of options and underlying eq-

uities). They find a strong negative relation between risk-neutral skewness

and asset returns, which is consistent with a positive skewness preference.

Cao and Han (2012) present a robust finding that delta-hedged equity

option return decreases monotonically with an increase in the idiosyncratic

volatility of the underlying stock. The intuition behind this finding relates to

market imperfections and constrained financial intermediaries: dealers charge

a higher premium for options with high idiosyncratic volatility of the under-

lying stock due to their higher arbitrage costs. This hypothesis is motivated
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by the theory of option pricing in an imperfect market that emphasizes the

role of constrained financial intermediaries. Shleifer and Vishny (1997) argue

that idiosyncratic volatility is the most important proxy of arbitrage costs,

as it is correlated with transaction costs and imposes a significant holding

cost for arbitrageurs. Thus, financial intermediaries would charge extra com-

pensation for supplying these options, which leads to higher prices and lower

returns.

The return of the equity options has been a popular topic in the litera-

ture. Hu and Jacobs (2014) provide a theoretical and empirical analysis of

the relationship between expected option returns and the volatility of the

underlying assets. They find the raw call option return is a decreasing func-

tion of the volatility of the underlying assets, while the raw put option return

is increasing with the volatility of the underlying assets. Aramonte (2014)

finds that macroeconomic uncertainty is priced in the cross-section of option

returns, even after controlling for a number of relevant factors.

One of the crucial issues in empirical option pricing is model specification.

Christoffersen, Fournier, and Jacobs (2013) find that the principal component

analysis of equity options on Dow-Jones firms reveals a strong factor struc-

ture. They further develop an equity option valuation model that captures

the cross-sectional market factor structure as well as stochastic volatility

through time. The model assumes a Heston (1993) style stochastic volatility

model for the market return but additionally allows for stochastic idiosyn-

cratic volatility for each firm; thus, it is referred as β-Heston model.

In this paper, I follow the methodology from Broadie, Chernov, and Jo-

hannes (2009) to investigate the cross-sectional returns of 29 individual equity

options (from Dow Jones Industrial Average index (DJIA)). The β-Heston

model is used as a benchmark to assess the evidence for equity option mispric-
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ing. Option returns computed from formal option pricing models automati-

cally reflect the leverage and kinked payoffs of options, and anchor hypothesis

tests at null values, provide a framework for assessing statistical uncertainty

via simulations. Furthermore, option returns are more straightforward to

interpret economically than pricing errors. Returns represent actual gain or

losses on purchased securities.

First, I find that, compared to index option returns, individual equity

option returns are highly volatile; their patterns are less clear and not eas-

ily traceable. Thus, comparing each of the equity option average returns to

those generated by the model found few interesting results. However, if we

take these 29 equity options’ average returns as a whole, and then compare

this distribution to that generated by the β-Heston model, I find that the two

distributions do not differ significantly from each other, indicating that the

β-Heston model could provide key insights for understanding and evaluating

equity put returns. The overall performance of equity options is consistent

with model estimation.

Meanwhile, the hypothesis that skewness preference influences asset prices

is also tested in this paper. Recent studies have found that total skewness

is priced in stocks. However, this literature also concludes that estimating

ex ante skewness for option returns is quite difficult because the correct set

of predictive instruments is not known. Boyer and Vorkink (2014) introduce

an ex ante option return skewness measurement that is simple to construct.

It only relies on three variables: moneyness, underlying asset expected re-

turn and volatility. Compared to previous studies, I modify their methods to

compute the ex ante skewness in order to exploit the information embedded

in the model. First, I find that this new parametric expected measurement

is able to replicate the results from Boyer and Vorkink (2014). There is a
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negative and robust relationship between expected skewness and equity op-

tion returns. The spread between the Low Skewness portfolio and the High

Skewness portfolio is positive and significant across all maturities. Again,

I apply the simulation procedure to test the null hypothesis that skewness

is not priced. However, the simulations under the β-Heston model produce

very similar patterns as the actual data; indeed, they are statistically in-

significant when compared to each other. Consequently, we cannot reject the

null hypothesis that skewness is not priced in the cross-section of individual

equity option returns.

Furthermore, I also provide evidence that the negative relationship be-

tween delta-hedged equity option returns and idiosyncratic volatility of the

underlying stocks can be replicated by model simulations, which casts doubt

on the hypothesis of market imperfections and constrained financial interme-

diaries.

The remainder of this paper is structured as follows. Section 2 introduces

the β-Heston Model. Section 3 discuss the dataset and estimation methods.

Section 4 investigates the mispricing issue based on the β-Heston model. Sec-

tion 5 shows how to construct skewness portfolios and compares the actual

returns with artificial returns generated from the model. Section 6 provides

evidence that casts doubt on the hypothesis of market imperfections and

constrained financial intermediaries. Conclusions are given in Section 7.

2 Model

In the option pricing literature, it is typical to assume a stochastic process for

each underlying equity price. Option pricing based on this stochastic process

ignores any links the underlying equity prices may have with other equity

5



prices through common factors. When considering a single stock option,

ignoring an underlying equity factor structure maybe be harmless. How-

ever, it is crucial in portfolio management to understand links between the

underlying stocks or options.

2.1 Physical Measure

In this paper, following Christoffersen et al. (2013), I consider an equity

market consists of n firms driven by a single market factor, It (index). The

individual stock prices are denoted by Sjt , for j=1,2,...,n. The market factor

has the following dynamics:

dIt
It

= (r + µI)dt+ σI,tdW
I,1
t (1)

dσ2
I,t = κv(θv − σ2

I,t)dt+ δIσI,tdW
I,2
t (2)

where µI is the instantaneous market risk premium, θI denotes the long-

run variance, κI captures the speed of mean reversion of σ2
I,t to θI , and δI

measures volatility of volatility. The innovations to the market factor return

and volatility are correlated with coefficient ρI .

Individual equity prices are driven by the market factor as well as an

idiosyncratic term which also has stochastic volatility:

dSjt

Sjt
− rdt = αjdt+ βjt (

dIt
It
− rdt) + σj,tdW

j,1
t (3)

dσ2
j,t = κj(θj − σ2

j,t)dt+ δjσj,tdW
j,2
t (4)
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where αj denotes the excess return (equity premium) and βj is the market

beta of firm j.

2.2 Risk-Neutral Measure

According to the equivalent martingale measure, the Q-process of the market

factor is given by:
dIt
It

= rdt+ σI,tdW
Q(I,1)
t (5)

dσ2
I,t = κQv (θQv − σ2

I,t)dt+ δIσI,tdW
Q(I,2)
t (6)

and the Q-processes of the individual equities are given by:

dSjt

Sjt
= rdt+ βjt (

dIt
It
− rdt) + σj,tdW

Q(j,1)
t (7)

dσ2
j,t = κj(θj − σ2

j,t)dt+ δjσj,tdW
Q(j,2)
t (8)

Note that the market factor structure is preserved under Q. The market

beta is the same under both risk-neutral and physical measure. This is

consistent with Serban, Lehoczky, and Seppi (2008), who document that the

risk-neutral and objective betas are economically and statistically close for

most stocks.

It should also be noticed that κj and θj are the same under both P and

Q measure, indicating that the idiosyncratic variance risk is not priced. Put

it differently, all of the risk premium (except for the equity premium) which

is defined as the difference between physical and risk neutral measure is

explained by the market factor through β.
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2.3 Closed-Form Option Price

The model discussed before is affine. It implies that the characteristic func-

tion for the log equity price can be derived analytically. The characteristic

function for the market index will be exactly identical to that in Heston

(1993). While for the individual equity options, the risk-neutral conditional

characteristic function φQ,j
t,T (u) is given by

φQ,j
t,T (u) = (Sjt )

iuexp(iur(T−t)−AI(ΛS, u)−BI(ΛS, u)σ2
I,t−Aj(ΛS, u)−Bj(ΛS, u)σ2

j,t).

(9)

The expression for AI , BI , Aj, and Bj can be found in the appendix. Given

the spot price characteristic function under Q, the price of a European equity

call option with strike price K and maturity T − t is

Cj
t (K,T − t) = SjtΠ

j
1 −Ke−r(T−t)Π

j
2 (10)

where the risk-neutral probabilities Πj
1 and Πj

2 are defined by:

Πj
1 =

1

2
+
e−r(T−t)

πSjt

∫ ∞
0

Re
[e−iulnKφQ

t,T (u− i)
iu

]
du (11)

Πj
2 =

1

2
+

1

π

∫ ∞
0

Re
[e−iulnKφQ

t,T (u)

iu

]
du (12)

with conditional characteristic function φQ
t,T defined before.

3 Estimation Methods

Several methods have been proposed in the literature for estimating stochas-

tic volatility model with latent variables, including MCMC, EMM, IS-GMM
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(Pan (2002) proposed Implied-State GMM estimation strategy. The author

approximates the unobserved volatility, Vt, with an option-implied volatility

which is inverted from the time-t spot price and a near-the-money short-

dated option price) and so on. Another approach treats the latent variable

as a parameter to be estimated and thus avoids filtering problem.

3.1 Data

I collect historical daily data on S&P500 and 29 equity options from January

1996 to August 2014. S&P500 index are used to proxy for the market factor.

The individual equities are selected from the Dow Jones Industrial Average

index (DJIA). Of the 30 firms in the index, Kraft Foods is excluded for

which OptionMetrics only has data from 2001. I filter out options having

more than 365 days to maturity. Following Bakshi, Cao and Chen (1997), I

use mid-quotes (average bid-ask spread) in all computations, and eliminate

options with moneyness (K/S) less than 0.9 or greater than 1.1. I also filter

out quotes with implied Black-Scholes Vega equal to zero. The S&P500

index options are European, but the individual equity options are American

style. As a result, their prices are influence by early exercise premium. To

circumvent possible biases due to the presence of early exercise premium, I

eliminate in-the-money (ITM) options for which the early exercise premium

matters most (See also Bakshi, Kapadia, and Madan (2003)).

3.2 Volatility Series

In this model, two vectors of latent variables {σ2
I,t, σ

2
I,t} and two sets of struc-

tural parameters {ΘI ,Θj} need to be estimated where ΘI ≡ {κQI , θ
Q
I , δI , ρI},

and Θj ≡ {κj, θj, δj, ρj βj}. The parameters ΘI and Θj are taken from

Christoffersen et al. (2013), the details of estimation procedure can be found
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in the appendix. While the volatility series of market index and equities are

estimated using the least square method.

σ̂2
I,t = argmin

σ2
I,t

NI,t∑
m=1

(CI,t,m − Cm(ΘI , σ
2
I,t))

2/V ega2
I,t,m, t = 1, 2, ...T (13)

Where CI,t,m is the market price of index option contract m quoted at t,

Cm(ΘI , σ
2
I,t) is the model index option price, NI,t is the number of index

contracts available on day t, and V egaI,t,m is the Black-Scholes sensitivity of

the option price with respect to volatility evaluated at the implied volatility.

These vega-weighted price errors are good approximation to implied volatility

errors and they are much more quickly computed. This method has been used

in Carr and Wu (2007).

Given an initial value Θj and using the estimated σ̂2
I,t and Θ̂I , we can

estimate the spot equity variance each day by sequentially solving

σ̂2
j,t = argmin

σ2
j,t

Nj,t∑
m=1

(Cj,t,m − Cm(Θ0
j , σ

2
j,t))

2/V ega2
j,t,m, t = 1, 2, ...T (14)

3.3 GMM

Since I treat the latent variable as parameters, indeed σI,t and σj,t are esti-

mated in the previous step, then it is natural to use standard GMM method

to estimate P-parameters. Given the characteristic function solved before,

we can write conditional moment generating function based on the following

relationship:

MX(t) = φ(−it) (15)

Letting

yn = lnSn − lnSn−1 (16)
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denote the date-n return. We can construct n moment conditions by

GN(θ) =
1

N

∑
n≤N

h
(
yn, σ

2
n, θ
)
, (17)

h is some test function be to chosen, such that

Eθ0
n−1

[
h(yn), σn, θ0

]
= 0 (18)

where θ0 is the true model parameters, Eθ
t−1 denotes the conditional expec-

tation associated with parameter set θ. Define the GMM estimator θ̂N by

θ̂N = argmin
θ∈Θ

GN(θ)>WNGN(θ). (19)

Given the explicitly known moment-generating function MX(t) defined be-

fore, the conditional moments of the log returns (setting St = 1 in φ) can be

derived by

En(yin+1) =
∂iMX(u)

∂iu

∣∣∣∣
u=0

, i ∈ {0, 1, ...}. (20)

Let mi(θ, σ
2
n) = Eθ

n(yin+1) and h(yn) = yin −mi(θ, σ
2
n).

3.4 Parameters: Result

Broadie, Chernov and Johannes (2007) argued that the absolute continuity

requirement implies that certain model parameters, are the same under both

measures. In this model, a comparison of the dynamics of St under physi-

cal and risk-neutral measure demonstrate that κj, θj, δj and ρj are the same

under both measures. This implies that these parameters can be estimated

either by index/equity returns or option prices, however, the estimates should

be the same from either data source. As advocated by Bates (2000), in order
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to impose this theoretical restriction, we should constrain these parameters

to be equal under both measures. For the parameters that are theoretically

constrained to be equal across measures, I use Q-measure parameters esti-

mated by Christoffersen, Fournier and Jacobs (2013). The spot volatility is

estimated in order to perform the standard GMM method. The results are

summarized in Table 1.

[Insert Table 1 about here]

4 Expected option return

In light of Broadie et al. (2009), hold-to-expiration put returns are defined

as

rpt,T =
(K − St+T )+

Pt+T (K,St)
− 1 (21)

where x+ ≡ max(x,0) and Pt,T (K,St) is the time-t price of a put option writ-

ten on St, struck at K, and expiring at time t+T. Hold-to-expiration returns

are widely analyzed in both academic studies and in practice given the fact

that option trading involves significant cost, for example, ATM (OTM) index

option bid-ask spreads are currently on the order of 3-5% (10%) of the op-

tion price. The goal of this section is to assess whether or not equity option

returns are excessive, either in absolute terms or relative to their risks. It

is common to compute average returns or Sharpe ratios to measure the per-

formance of the asset returns. Strategies that writing put options generally

deliver higher average returns than the underlying asset, have economically

and statistically higher Sharpe ratios than the market.

It is well known that options are leveraged positions in the underlying

asset, so call (put) options have higher (lower) expected returns than the un-

derlying. The precise magnitude of expected returns depends on a number
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of factors that include the specific model, the parameters, and factor risk

premiums. Previous studies concluded that EORs (expected option returns)

are very sensitive to both the equity premium and volatility.

The experiment performed in this section is straightforward: I compare

the observed values of these intuitive metrics (average returns and Sharpe

ratios) in the data to those generated by the β-Heston model. The formal

model provides an appropriate null value for anchoring hypothesis test.

4.1 Theoretical Predication Under the β-Heston Model

The β-Heston model provides theoretical background to study the equity

option returns, more precisely, we are interesting in whether/how much the

idiosyncratic return can be explained by the systematic risk factor. Christof-

fersen et al. (2013) provide an expression for the expected equity option

returns as a function of the expected market return.

For a derivative fj written on the stock price , Sjt , the expected excess return

on the derivative contract is given by:

1

dt
EP
p [
df j

f j
− rdt] =

∂f j

∂Sjt

Sjt
f j
αj +

∂f j

∂It

It
f j
µI =

∂f j

∂Sjt

Sjt
f j

(αj + βjµI) (22)

where
∂fj
∂It

is the sensitivity of derivative contract f j with respect to the index

level, It (the market delta). It is given by

∂f j

∂It
=
∂f j

∂Sjt

Sjt
It
βj. (23)

This result reveals that the beta of the stock provides a simple link be-

tween the expected return on the market index and the expected return on

the equity option via the delta of the option. The model thus decomposes the
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excess return on the options into two parts: The delta of the equity option

and the beta of the stock. In other words, equity options provide investors

with two sources of leverage: first, the beta with respect to the market, and

second, the elasticity of the option prices with respect to changes in the stock

price.

[Insert Figure 1 about here]

In Figure 1, I plot the expected hold-to-expiration returns on equity call

options (top panel) and on put options (bottom panel) in percent per month

against moneyness for firms with different betas. The top panel of Figure 1

shows that the difference in expected call returns across firms with different

betas can be substantial for OTM calls where option leverage in general is

high. The bottom panel of Figure 1 shows that put option expected returns

(which are always negative) also vary across firms with different betas, when

the put options are OTM. As the formula implied, the betas play different

roles in expected return for call and put options since the delta of call and put

options is opposite. For call options, given a moneyness group, higher beta

indicates higher return. While for put options, the relationship is reversed.

4.2 Analytical expected option returns

Expected put option returns are given by

EP
t (rpt,T ) =

EP
t [(K − St+T )+]

Pt+T (St, K)
− 1 =

EP
t [(K − St+T )+]

EQ
t [e−rT (K − St+T )+]

− 1 (24)

It is clear that any model that admits analytical option prices, such as affine

models, will allow EORs to be computed explicitly since the numerator and

denominator are known analytically. EORs do not depend on St. To see this,
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define the initial moneyness of the option as κ = K/St. Option homogeneity

implies that

EP
t (rpt,T ) =

EP
t [(κ−Rt+T )+]

EQ
t [e−rT (κ−Rt+T )+]

− 1, (25)

where Rt,T = St+T/St is the gross index return. EORs depend only on

the moneyness, maturity, interest rate, and distribution of the underlying

returns.

These analytical results are primarily useful as they allow us to assess

the exact quantitative impact of risk premiums or parameter configurations.

Equation (32) implies the gap between the P and Q probability measures

determines EORs, and the magnitude of the returns is determined by the

relative shape and location of the two probability measures. In models with-

out jump or stochastic volatility risk premiums, the gap is determined by

the equity risk premium. When we take stochastic volatility or jump risk

premium into consideration, both the shape and location of the distribution

can change, leading to more interesting patterns of expected returns across

different moneyness categories.

4.3 Summary for Equity Option Returns

Options analyzed in this section are one month time-to-maturity OTM put

options. Hold-to-expiration returns are computed for fixed moneyness, mea-

sured by strike divided by the underlying (K/St), ranging from 0.92 to 1.00

(in 2% increments).

Table 2 shows the average hold-to-expiration returns for 29 equity options

divided into five moneyness groups. As we can see from the table, the equity

option returns are highly volatile, for moneyness equal to 0.92, returns range

from -88% for JNJ (Johnson & Johnson) to 35% for TRV (Travellers) per
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month. The mean returns for each moneyness group are negative and in-

creasing with moneyness. These patterns are consistent with the prediction

derived in Coval and Shumway (2001) under general assumptions.

[Insert Table 2 about here]

We can find similar results from Table 3, the distribution of Sharpe ratios

for each moneyness group is highly volatile. Generally, the Sharpe ratios of

put options are larger (in absolute value) than those of the underlying mar-

ket. For instance, the monthly Sharpe ratio for the market is about 0.1, and

the put return Sharpe ratios are several times larger.

[Insert Table 3 about here]

4.4 Return Distribution via Monte Carlo simulation

To assess statistical significance, I use Monte Carlo simulation to compute

the distribution of various returns statistics, including average returns and

Sharpe ratios. I simulate N = 10000 times of index and 29 equities levels us-

ing Milstein scheme simulation. For each equity j and underlying simulation

trial g, put returns for a fixed moneyness κ are

r
j,κ,(g)
t,T =

(κ−R(g)
t,T )+

PT (κ)
− 1 (26)

where

PT (κ) ≡ Pt,T (St, K)

St
= e−rTEQ

t [(κ−Rt,T )+] (27)
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g = 1, ..., N . Average simulated returns for the equity option j, from mon-

eyness group κ are

r̄j,κt,T =
1

N

N∑
g=1

r
j,κ,(g)
t,T (28)

Similarly, we can construct finite-sample distributions for Sharpe ratios. The

following subsection illustrates the simulation techniques.

4.5 Results From Simulations

Table 4 summarizes EORs (expected option returns) corresponding to each

equities for various strikes. It is assumed that all risk premiums (except for

the equity premium) are equal to zero. The simulated returns are relatively

stable, compared to those generated by real data. For each of the equities,

EORs are increasing with respect to moneyness. This pattern becomes clear

in the simulated returns.

[Insert Table 4 about here]

As we already seen, the equity option returns are volatile and their pat-

terns are less clear. Thus, comparing each of the equity option average

returns to those generated by the model could hardly find any interesting re-

sults. However, if we take these 29 equities options as a whole, which means

their average returns constitute a distribution of individual equity option av-

erage returns. Then compare this distribution to the one generated by the

β-Heston model, I find that the p-value is quite high, indicating that two

distributions are not significantly different from each other. Similar result

is also found for Sharpe Ratios in Table 5. The results are summarized in

Table 6.

[Insert Table 5 about here]
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The top panel of Table 6 reports population average returns for put op-

tions of 29 equities for various strikes. We first note that all the metrics

except 8% OTM option return are statistically insignificant when compared

to the model. Based on the β-Heston model, we can conclude that: gener-

ally, the β-Heston model could provide key insights for understanding and

evaluating equity put returns. This result is interesting since the existing lit-

erature concludes that OTM put options are most anomalous or mispriced.

The results for Sharpe ratios are similar, with none of the strikes statistically

different from those generated by the model. These two findings indicate

that the overall performance of the equity options is consistent with model

estimation. This result is particularly useful when we are evaluating the per-

formance of portfolios consist of equity options. It is proved indirectly in the

next section.

[Insert Table 6 about here]

5 Skewness Preference and Option Returns

Recent research shows that individuals deviate from standard utility theory

when making choices in the face of uncertainty. For instance, investors pre-

fer skewness or lottery-like features in asset return distributions, and these

preferences influence asset prices in equilibrium. Asset returns have a strong

negative relationship with skewness. The individual equity options market

offers an ideal platform to study the skewness preference on asset returns.

The unusual dramatic lottery-like features in option returns due to the im-

plicit leverage in an option contract combined with a nonlinear payoff. Em-

pirically, the ex ante return skewness of equity options can be more than 10

times higher than equity return skewness. Previous studies suggest that total
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skewness is priced. Boyer and Vorkink (2014) find a significant and econom-

ically large effect of total skewness preference on option prices in both call

and put option markets.

5.1 Ex ante skewness measurement

To understand whether differences in the lottery-like characteristics of op-

tions help explain cross-sectional variation in their expected returns, it is

assumed that skewness is a proxy for the lottery-like characteristics of op-

tions. In light of Boyer and Vorkink (2014), I construct closed-form ex ante

skewness measures for the physical distribution of option returns by inte-

grating the appropriate PDF under the assumption that stock returns are

lognormal.

It is obvious that the lognormal assumption does not perfectly character-

ize the distribution of the underlying stocks. However, it allows for a simple

approach to estimate the physical ex ante skewness of an option contract

that uses only information available at the time of purchase. Lien (1985)

provided a closed-form moments for options returns (under this assumption)

by integrating the truncated lognormal PDF.

The ex ante skewness for option j over hirizon t to T is defined as

skj,t:T =
Et[Rj,t:T − µj,t:T ]3

[σj,t:T ]3
(29)

where Rj,t:T denotes option j’s hold-to-expiration return defined before, Et[.]

denotes the expectation given information known at time t, µj,t:T = Et[Rj,t:T ],

and σj,t:T = (Et[R
2
j,t:T ] − µ2

j,t:T )1/2. By rewriting previous equation in terms
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of its raw moments,

skj,t:T =
Et[R

3
j,t:T ]− 3Et[R

2
i,t:T ]µi,t:T + 2µ3

i,t:T

[Et[R2
i,t:T ]− µ2

i,t:T ]1.5
, (30)

note that only the first three raw moments of the option return are required

to calculate ski,t:T . Given the definition of hold-to-expiration return, we can

write the mth raw moment for put option j as

Et
[
(Rp

j,t:T )m
]

= Et

[
(
Kj − Sj,T

Pj,t
)m|Kj > Sj,T

]
Pt(Kj > Sj,T ) (31)

where Pt(.) indicates the probability given information at time t. Under the

assumption of lognormality, equation (42) illustrates the raw moments for a

put option are a function of the raw moments of a truncated lognormal dis-

tribution. The following section demonstrates how to construct the expected

skewness measure, ski,t:T .

5.2 Closed form of raw raw moments

Let r = ln(ST/St), the log stock return, and assume that r is distributed

N(µ, σ2). Under this assumption, the stock return, ST/St, is lognormal. In

the original paper of Boyer and Vorkink (2014), µj and σ2
j are estimated

using six months of daily data prior to t. While in this paper, I estimate

these two variables in a parametric way in order to absorb the firm specific

information contained in the model. According to the β-Heston model, for

equity j with options expire at T,

µj = (r + αj + βjµI)× (T − t) (32)
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and

σ2
j =

(
Et
[
Vj,T

]
+ β2

jEt
[
VI,T

])
× (T − t), (33)

with

Et
[
Vi,T
]

= e−κi(T−t)Vi,t + θi(1− e−κi(T−t)) (34)

where i = I, j stands for the index process and equity process, respectively.

αj, βj, µI , κi, and θi are the parameters estimated before. Vi,t is set equal to

average spot variance of the underlying.

It should be emphasized that estimating µ and σ2 in this parametric way

does not rely on the distribution of the β-Heston model, instead, it provides

an approximation for these two variables. Given the raw moments for put

options, we can construct skj,t:T for put options for any level of moneyness

and maturity.

5.3 Option Characteristics and Skewness

In order to understand how different option characteristics could influence

the expected skewness measure, ski,t:T , Figure 2 plots ski,t:T as a function

of moneyness K/St, for three different time to maturities. Although the

way to estimate ski,t:T is slightly different from the one used in Boyer and

Vorkink (2014), we both find that there is a relationship between moneyness

and ex ante skewness, especially for short maturity options. Generally, out-

of-the-money options offer higher skewness than in-the-money options. For

instance, the ex ante skewness of short-term, out-of-the-money options is

well over 10, several times large than the ex ante skewness of equity returns

(See Boyer, Mitton, and Vorkink (2010) and Conrad, Dittmar, and Ghysels

(2013)). Comparing top panel and bottom panel, we can find that call options
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display similar patterns as their corresponding put options. Figure 3 plots

ski,t:T as a function of moneyness K/St, for three different betas. We can

see that Beta plays the same role for both call options and put options: All

things equal, as the beta increase, the ex ante skewness decrease for both call

and put options.

[Insert Figure 2 about here]

[Insert Figure 3 about here]

5.4 Option Portfolio Formation and Returns

Based on the parameters and equations given in the previous sections, we can

now compute the ex ante skewness for each of the equity options. Table 7

illustrate the distribution of put option ex ante skewness for fixed moneyness

with different maturities. Note that each of the cell (skewness value) in the

table is attached to one real return and one simulated return corresponding to

its parameters. Similar procedures are repeated for each of the five moneyness

groups (OTM 8% to ATM). Next, for each portfolio maturity, I sort options

within each expiration bin into ex ante skewness quintiles.

[Insert Table 7 about here]

Table 8 reports average of portfolio returns generated by data and simu-

lations for each ex ante skewness/maturity bin. Both actual returns and

simulated returns decrease dramatically across skewness bins for every ma-

turity group. We first focus on the return generated by data. For example,

put options that expire in two weeks, the actual average hold-to-maturity

return is monotonically decreasing from -17% for the low skewness bin to

-54% for the high skewness bin. The paired t-statistic for the difference is
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7.738. Furthermore, the average difference in spreads between the low and

high skewness portfolios is positive and significant in all cases. These re-

sults (real data) are similar to those reported by Boyer and Vorkink (2014).

Based on these results (and some control tests), they claimed that skewness

preference is priced in the equilibrium. Put differently, these results indicate

that individual equity option investors give up average returns on the order

of 50% monthly for exposure to the lottery opportunities that options with

high ex ante skewness offer.

[Insert Table 8 about here]

However, the results from simulations provide evidence for an opposite

conclusion. The simulated portfolio returns exhibit very similar patterns as

actual returns (the monotonicity feature is even more clear). Again, the

difference in spreads between the low and high skewness portfolios is posi-

tive and significant across all maturity groups, with substantially higher t-

statistics. The p-values between simulated and real portfolio returns are gen-

erally high for each ex ante skewness/maturity bin. It indicates that the two

distributions are not statistically different from each other. Consequently,

we can not reject the null that skewness is not priced in the cross-section of

individual equity option returns.

6 Stock Volatility and Option Returns

Cao and Han (2012) presents a robust finding that delta-hedged equity option

return decreases monotonically with an increase in the idiosyncratic volatility

of the underlying stock. The result is still significant even after controlling

for standard risk factors. The intuition behind this finding could be mar-

ket imperfections and constrained financial intermediaries: Dealers charge a
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higher premium for options with high idiosyncratic volatility underlying due

to their higher arbitrage costs. This hypothesis is motivated by theory of

option pricing in imperfect market that emphasizes the role of constrained

financial intermediaries.

Option prices are affected by demand and supply from the markets when

there are limits to arbitrage and it is costly to hedge or replicate the options.

Shleifer and Vishny (1997) argue that the idiosyncratic volatility is the most

important proxy of arbitrage costs, as it is correlated with transaction costs

and imposes a significant holding cost for arbitrageurs. On the one hand, op-

tions with high idiosyncratic volatility attract high demand from speculators.

On the other hand, such options are more difficult to hedge. Thus, financial

intermediaries would charge extra compensation for supplying these options,

which leads to a higher price and lower return. Hu and Jacobs (2014) pro-

vide a theoretical and empirical analysis of the relationship between expected

option returns and the volatility of the underlying. They find the raw call

option return is a decreasing function of the volatility of the underlying, while

the raw put option return is increasing with the volatility of the underlying.

6.1 Delta-hedged option returns

I study the delta-hedged put option returns in this paper, using the Black-

Scholes delta as approximation. Following Goyal and Saretto (2009), the

strategy return is defined as hold-to-expiration, the position of stocks and

options is fixed after the strategy is built. The details follows: For each of

the month during the sample period, I long one unit of at-the-money put

option with maturity equal to one month (if available). Then, hedge the put

with a long position of ∆ (Black-Scholes delta) unit of underlying stock. The
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one month hold-to-expiration return Γ of this strategy is defined as

Γ(t, T ) =
max(0, K − ST ) + ∆t · ST

Pt + ∆t · St
− 1 (35)

Where t is the time when we build the strategy, Pt is the put price at that

time, ∆t is the Black-Scholes delta of put option at time t.

6.2 Underlying volatility and portfolio construction

The total volatility (V OLtot) of the underlying is computed based on the daily

log-return of the underlying price over the previous month, then annualized.

Similarly, the market volatility (V OLmkt) is computed based on the daily

log-return of the S&P500 index over the previous month, then annualized.

The idiosyncratic volatility is defined as follows:

V OLidio =
√
V OL2

tot − β2
j · V OL2

mkt (36)

Where βj is the parameter estimated before for stock j.

The portfolio is constructed by sorting the underlying total/idiosyncratic

volatility. At the maturity of the put option, I rank the strategy returns

into five quintiles based on the underlying idiosyncratic volatility (same pro-

cedures are repeated for total volatility). Note that the simulated portfolio

returns are sorting based on total long-term volatility
√
θj + β2

j · θi and id-

iosyncratic long-term volatility
√
θj.

6.3 Results summary

Table 9 summarize the delta-hedged portfolio returns from actual data and

simulations based on two sorting criteria: Total volatility and Idiosyncratic
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volatility. We first look at the actual data, it shows that the returns of

delta-hedged put options are always negative (long position), furthermore,

the average return on high total/idiosyncratic volatility stocks is significantly

higher than that on low total/idiosyncratic volatility stocks. For instance,

the average difference in returns between the portfolio of long positions in

delta-hedged puts for stocks ranked in the top volatility quintile and that for

stocks ranked in the bottom volatility quintile is 1.6%, with a t − statistic

equal to 5.14. Similar result (1.05 % with t − statistic equal to 2.96) can

be found when we sort stocks by their idiosyncratic volatility. Although

in Cao and Han (2012), they use daily-hedge strategy (while in this paper,

the position is hedged and fixed at the initiative), the negative relationship

between portfolio returns and underlying volatility is also confirmed here.

[Insert Table 9 about here]

However, this pattern can be also found qualitatively in the corresponding

simulation portfolios. As we can see from the table, the difference in sim-

ulated returns between high volatility quintile and low volatility quintile is

0.43% for sorting total volatility and 0.31% for sorting idiosyncratic volatility.

The difference is statistically significant, however, it is much smaller than the

one from actual data. This is due to the fact that the simulated average re-

turns are more flat across different quintiles, compare to those from real data.

The mean of the average returns from different quintiles is almost the same

for both Data portfolios and Simulated portfolios, with a P − value equal

to 0.71 and 0.68 for total and idiosyncratic volatility portfolio, respectively.

As we can expected, when comparing data with simulations (measured by

P − value), the portfolios from top/bottom quintile are significantly differ-

ent from each other. While it is not the case in the middle quintiles, indeed,

we can not reject the null that the average return is the same for Data and
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Simulation portfolio for quintile 2, 3 and 4.

Although the results from the actual data illustrate that there are more

extreme returns in the top/bottom quintile, the simulations still provide

qualitatively similar pattern: the negative relationship between delta-hedged

return and underlying volatility, cast doubts on the market imperfection and

constrained financial intermediaries hypothesis.

7 Conclusion

In this paper, I study the cross-section of equity option returns to inves-

tigate the out-of-the-money option mispricing issue. The newly developed

β-Heston model is used to construct sample distributions of average option

returns and Sharpe ratios using Monte Carlo simulation. First, I find that

the most puzzling, the very large (in absolute value) returns to OTM options

is consistent with the β-Heston model. Second, I find little added benefit

from using Sharpe ratios as diagnostic tools since the result is similar to

those from average option returns.

Recent studies show that standard rational asset pricing models have diffi-

cult explaining many of the basic empirical facts about the financial markets.

For instance, investors prefer skewness or lottery-like features in asset return

distributions, and these preferences influence asset prices in equilibrium. I

modify the method to compute the ex ante skewness (in a parametric way)

in order to exploit the information from the model. First, I find that this

new parametric ex ante skewness measurement is able to replicate the results

from Boyer and Vorkink (2014). There is a negative and robust relationship

between ex ante skewness and equity option returns. Then, I apply the sim-

ulation procedure to test the null that skewness is not priced. However,
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different from previous studies, the simulation under the β-Heston model

produces very similar patterns as the actual data, indeed, they are not sta-

tistically different from each other. Consequently, we can not reject the null

that skewness is not priced in the cross-section of individual equity option

returns.

Furthermore, I also provide evidence that the negative relationship be-

tween delta-hedged equity option returns and idiosyncratic volatility of the

underlying stocks can be replicated by model simulations, which casts doubts

on the hypothesis of market imperfections and constrained financial interme-

diaries.

Note that these findings should not be interpret as the evidence that the

β-Heston model is correct, but rather as highlighting the statistical difficulties

present when analyzing option returns. Indeed, a natural extension to the

β-Heston model is to incorporate jumps in the underlying as well as volatility

process. It would be interesting to study how would expected option returns

change due to these innovations. I leave these questions for future work.
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A Appendix A: Ex Ante Skewness

In the appendix, following Boyer and Vorkink (2014), I demonstrate how

the ex ante skewness measure, skj,t:T is constructed based on the assuming

lognormal stock prices. In light of Lien’s (1985) theorem regarding truncated

lognormal distributions, theorem A.1 is presented here.

Theorem A.1: Let (u1, u2)′ be a normal random vector with mean (0,0)’

and covariance matrix=

 σ2
1 σ12

σ12 σ2
2

 . Then
E(exp(ru1 + su2)|u1 > a) = N(

h− a
σ1

)
exp[−D/2Q]

N(−a
σ1

)
, (37)

where h = rσ2
1 + sσ12, D = −Q(r2σ2

1 + 2rsσ12 + s2σ2
2), Q = σ2

2sigma
2
1 −

sigma2
12, andN(·) is the CDF of the normal.

Note first that Lien’s (1985) theorem A.1 can be used to derive closed-

form solutions for the raw moments of option returns given by equation (42).

These raw moments can be substituted into equation (41) to construct skj,t:T .

For m = 1, equation (42) can be written as

E[Rc
t:T ] =

[St
Ct
E(
ST
St
|ST
St

>
X

St
)− X

Ct

]
P (
ST
St

>
X

St
), (38)

where St is the value of the underlying asset at time t < T . Let r̂ =

ln(ST/St), the log stock return, and define A as A = lon(X/St). Then

equation (52) can be written as

E[Rc
t:T ] =

[St
Ct
E(er̂|r̂ > A)− X

Ct

]
P (r̂ > A). (39)

Now assume that r̂ is distributed N(µ̂, σ̂2), where in general µ̂ can be nonzero.

Under this assumption, the stock return, ST/St, is lognormal. Furthermore,
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define z = r̂ − µ̂, so that z is distributed N(0, σ̂2). Then note that

E(er̂|r̂ > A) = E(ez+µ̂|z > A− µ̂) = eµ̂E(ez|z > A− µ̂) (40)

Then applying Lien’s (1985) theorem implies that equation (54) can be writ-

ten as

E(er̂|r̂ > A) =
exp[µ̂+ σ̂2

2
]N(d1)

N(d2)
(41)

Then we can plug equation (55) in to equation (53) to get the first moment

of the call option return, following the similar approach, the corresponding

raw moments for put options are

E
[
Rp
t:T

]
=
KN(−d2)− Stexp

[
σ2

2
+ µ
]
N(−d1)

Pt
(42)

where d1 = σ2+ln(St/K)+µ
σ

and d2 = d1 − σ.

E
[
(Rp

t:T )2
]

=
K2N(−d2)− 2XStexp

[
σ2

2
+ µ
]
N(−d1)

P 2
t

+
S2
t exp

[
2σ2 + 2µ

]
N(−d3)

P 2
t

(43)

with d3 = d1 + σ, and d4 = d1 + 2σ.

E
[(
Rp
t:T

)3]
=

3KS2
t exp

[
2σ2 + 2µ

]
N(−d3)− S3

t exp
[

9
2
σ2 + 3µ

]
N(−d4)

P 3
t

+
K3N(d2)− 3K2Stexp

[
σ2

2
+ µ
]
N(−d1)

P 3
t

(44)

where Pt is the put price at time t and K is the strike price.
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B Appendix B: Closed-Form Option Price

Christoffersen et al. (2013) provide the closed-form option price for the β-

Heston model, the proof of the following result can be found in their paper.

The risk-neutral conditional characteristic function φQ,j
t,T (u) is given by

φQ,j
t,T (u) = (Sjt )

iuexp(iur(T−t)−AI(ΛS, u)−BI(ΛS, u)σ2
I,t−Aj(ΛS, u)−Bj(ΛS, u)σ2

j,t).

(45)

Where

Ai(Λ, u) =
κQi θ

Q
i

δ2
i

{
2ln(1− Ψi(ΛS, u)− κCi

2Ψi(ΛS, u)
(1− e−Ψi(ΛS ,u)(T−t))

+(Ψi(ΛS, u)− κCi )(T − t)
} (46)

Bi(ΛS, u) =
2gh(u)(1− e−Ψi(ΛS ,u)(T−t))

2Ψi(ΛS, u)− (Ψi(ΛS, u)− κCi )(1− e−Ψi(ΛS ,u)(T−t))
(47)

with

Ψi(ΛS, u) =
√

(κCi )2 + 2δ2
i gi(u) (48)

g1(u) =
iu

2
β2
j (1− iu) and g2(u) =

iu

2
(1− iu) (49)

κCI = κQI − iuρIβjδI , θ
C
I =

κQI θ
Q
I

κCI
, κCj = κj − iuρjδj, θCj =

κjθj
κCj

(50)

Note i = I, j for index and equity, respectively. h = 1 if i = I and h = 2 if

i = j.
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C Appendix C: Estimation Procedure

In this model, two vectors of latent variables {σ2
I,t, σ

2
I,t} and two sets of struc-

tural parameters {ΘI ,Θj} need to be estimated where ΘI ≡ {κQI , θ
Q
I , δI , ρI},

and Θj ≡ {κj, θj, δj, ρj βj}. This involves two main steps. In the first step,

the market index dynamic {ΘI , σ
2
I,t} is estimated based on index option prices

alone. In the second step, I take the market index dynamic as given, then

estimate the firm-specific dynamics {Θj, σ
2
j,t}. This step-wise estimation pro-

cedure (while not fully efficient) enables us to estimate the model for equities

while ensuring that the same index dynamic is imposed for each of the in-

dividual equities. Christoffersen (2013) confirmed that this estimating tech-

nique has good finite sample properties in a Monte Carlo study.

Step 1: Market Index Volatility and Parameter Estimation Given a

set of starting values, Θ0
I , for the index structural parameters, I first estimate

the spot market variance each day by sequentially solving

σ̂2
I,t = argmin

σ2
I,t

NI,t∑
m=1

(CI,t,m − Cm(Θ0
I , σ

2
I,t))

2/V ega2
I,t,m, t = 1, 2, ...T (51)

where CI,t,m is the market price of index option contract m quoted at t,

Cm(ΘI , σ
2
I,t) is the model index option price, NI,t is the number of index

contracts available on day t, and V egaI,t,m is the Black-Scholes sensitivity of

the option price with respect to volatility evaluated at the implied volatility.

These vega-weighted price errors are good approximation to implied volatility

errors and they are much more quickly computed. This method has been used

in Carr and Wu (2007).

Once the set of T market spot variances have be obtained, we can solve
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for the set of market parameters as follows

Θ̂I = argmin
ΘI

NI∑
m,t

(CI,t,m − Cm(ΘI , σ̂
2
I,t))

2/V ega2
I,t,m. (52)

Iteration is needed between (20) and (21) until the improvement in fit is

negligible.

Step 2: Equity Volatility and Parameter Estimation Given an initial

value Θ0
j and using the estimated σ̂2

I,t and Θ̂I , we can estimate the spot equity

variance each day by sequentially solving

σ̂2
j,t = argmin

σ2
j,t

Nj,t∑
m=1

(Cj,t,m − Cm(Θ0
j , σ

2
j,t))

2/V ega2
j,t,m, t = 1, 2, ...T (53)

Once the set of T individual equity spot variance have be obtained, the set

of individual equity parameters can be estimated as follows

Θ̂j = argmin
Θj

Nj∑
m,t

(Cj,t,m − Cm(Θj, σ̂
2
j,t))

2/V ega2
j,t,m. (54)

D Appendix D: Simulation Methods

The Euler scheme and the Milstein discretization are widely used in model
simulation. The Euler scheme is a first-order method, it is the most basic
explicit method for numerical integration of ordinary differential equations
(ODE). While the disadvantage of the Euler scheme is its slow convergence.
In this paper, I choose the Milstein scheme, which is a second-order method.
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The corresponding scheme of discrete time stepping for index It is

I(ti+1) = I(ti) + I(ti)µI∆t+ I(ti)σI(ti)
√

∆tWi +
1

2
σ2
I (ti)I

2(ti)∆t(W
2
i − 1)

(55)

σ2
I (ti+1) = σ2

I (ti)+κI(θI−σ2
I (ti))∆ti+δIσI(ti)

√
∆tZi+

1

4
δ2
I∆t(Z

2
i −1) (56)

where Wi and Zi are samples from a standard normal distribution with cor-
relation equal to ρI . Note that µI , κI , θI , ρI and δI are the parameters for the
index process defined before.

The corresponding scheme of discrete time stepping for equity j is

Sj(ti+1) = Sj(ti) + Sj(ti)(αj + r)∆t+ βj(
I(ti+1)− I(ti)

I(ti)
− r∆t)

+Sj(ti)σj(ti)
√

∆tWj +
1

2
σ2
j (ti)S

2
j (ti)∆t(W

2
j − 1)

(57)

σ2
j (ti+1) = σ2

j (ti)+κj(θj−σ2
j (ti))∆ti+δjσj(ti)

√
∆tZj +

1

4
δ2
j∆t(Z

2
j −1) (58)

where Wj and Zj are samples from a standard normal distribution with
correlation equal to ρj. Note that αj, κj, θj, βj, ρj and δj are the parameters
for the equity process defined before.
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Figure 1: Expected Returns on Equity Options

Panel A: Call Options

Panel B: Put Options

Note to Figure: In this figure, I plot the expected Hold-to-Expiration returns

against betas on call and put using the model. Each line has a different beta. The

parameters for the market index are κI = 3.81, θI = 0.0279, δI = 0.456, µI = 0.08

and ρI = −0.715. The parameters for individual equity are κj = 1.14, θj = 0.0072,

δj = 0.128, µj = 0.01 and ρj = −0.656. The risk-free rate is set to 0.03. All the

parameters are in annual basis.
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Figure 2: Option skewness against moneyness

Panel A. Call Options

Panel B. Put Options

Note to Figure: This figure plots option ex ante skewness against moneyness

(K/S). The parameters for the market index are κI = 3.81, θI = 0.0279,

δI = 0.356, µI = 0.08 and ρI = −0.715. The parameters for individual equity

are κj = 1.29, θj = 0.042, δj = 0.329, αj = 0.013 and ρj = −0.474. The risk-free

rate is set to 0.03. All the parameters are in annual basis.
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Figure 3: Option skewness against Beta

Panel A. Call Options

Panel B. Put Options

Note to Figure: This figure plots option holding return skewness against betas.

The parameters for the market index are κI = 3.81, θI = 0.0279, δI = 0.356,

µI = 0.05 and ρI = −0.715. The parameters for individual equity are κj = 1.14,

θj = 0.0072, δj = 0.128, αj = 0.01 and ρj = −0.656. The risk-free rate is set to

0.03. All the parameters are in annual basis.
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Table 1: Physical Parameters. Index and Equities

Ticker Beta Kappa Theta Delta Rho Alpha/Mu
SPX 2.83 0.0383 0.371 -0.855 0.056
JNJ 0.72 0.8 0.0219 0.187 -0.566 -0.006
KO 0.75 0.9 0.0252 0.213 -0.571 0.000
PG 0.78 0.85 0.0317 0.233 -0.346 0.006

MCD 0.78 1.01 0.0451 0.302 -0.426 0.017
WMT 0.81 0.54 0.0494 0.231 -0.549 0.010
PFE 0.89 0.96 0.0323 0.248 -0.574 0.020

MMM 0.91 0.99 0.0153 0.174 -0.478 -0.006
TRV 0.92 0.54 0.0256 0.16 -0.565 0.053
VZ 0.89 0.73 0.0323 0.217 -0.545 -0.020

UTX 0.91 1.04 0.0247 0.226 -0.376 0.078
MRK 0.92 1.28 0.033 0.291 -0.495 0.010
IBM 0.97 1.24 0.0126 0.177 -0.598 0.049
CVX 0.88 0.85 0.0272 0.078 -0.458 0.008
DD 0.99 0.76 0.0113 0.126 -0.542 0.000
T 0.97 0.52 0.0229 0.055 -0.434 -0.058

XOM 0.97 0.5 0.0267 0.008 0.297 0.007
BA 0.99 1.07 0.0323 0.263 -0.523 0.041

HPQ 1.06 1.29 0.042 0.329 -0.474 0.013
BAC 1.11 0.15 0.0159 0.068 -0.724 0.020
DIS 1.08 0.95 0.0119 0.15 -0.496 0.012

MSFT 1.11 0.99 0.0131 0.14 -0.523 0.036
CSCO 1.17 0.96 0.0586 0.333 -0.529 0.015
INTC 1.16 1.24 0.023 0.23 -0.492 0.053
CAT 1.16 0.87 0.006 0.102 -0.466 0.065
GE 1.11 0.99 0.0022 0.029 -0.561 -0.004
HD 1.16 1.04 0.0142 0.17 -0.611 0.035
AA 1.18 1.04 0.0135 0.14 -0.37 0.000

AXP 1.24 0.81 0.0018 0.054 -0.6 0.094
JPM 1.21 1.14 0.0072 0.128 -0.656 0.072

For the parameters that are theoretically constrained to be
equal across measures, I use Q-measure parameters estimated
by Christoffersen, Fournier and Jacobs (2013). The physical
parameters for index process are estimated by Chambers el al.
(2014). The rest of the equity parameters and the spot volatility
are estimated based on the methods discussed before.
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Table 2: Average Hold-to-Expiration Put Returns
Moneyness: K/St

Ticker 0.92 0.94 0.96 0.98 1.00
JNJ -0.88 -0.92 -0.42 -0.57 -0.38
KO -0.68 -0.50 -0.39 -0.27 0.00
PG -0.73 -0.64 -0.35 -0.35 -0.19

MCD -0.41 -0.59 -0.24 -0.16 -0.12
WMT -0.40 -0.54 -0.69 -0.33 -0.36
PFE -0.61 -0.80 -0.43 -0.12 0.01

MMM -0.53 -0.48 -0.79 -0.37 -0.30
TRV 0.35 -0.40 -0.17 -0.18 -0.56
VZ -0.50 -0.72 -0.54 -0.30 -0.15

UTX -0.82 -0.28 -0.37 -0.47 -0.12
MRK -0.43 0.31 -0.46 -0.65 -0.52
IBM -0.17 -0.36 -0.05 -0.25 -0.27
CVX -0.22 -0.39 -0.29 -0.10 -0.09
DD -0.53 -0.55 -0.42 -0.34 -0.25
T -0.25 -0.48 -0.50 -0.51 -0.16

XOM -0.64 -0.23 -0.54 -0.48 -0.27
BA -0.69 -0.22 -0.39 -0.17 -0.07

HPQ -0.56 -0.14 -0.21 -0.34 -0.12
BAC -0.19 -0.50 -0.29 -0.53 -0.16
DIS -0.55 -0.81 -0.79 -0.57 -0.37

MSFT -0.85 -0.55 -0.59 -0.55 -0.34
CSCO -0.79 -0.12 -0.29 -0.42 -0.40
INTC -0.47 -0.37 -0.18 -0.29 0.01
CAT -0.85 -0.38 -0.68 -0.32 -0.61
GE -0.66 -0.71 -0.29 -0.15 -0.21
HD -0.54 -0.64 -0.53 -0.47 -0.03
AA 0.15 -0.14 0.22 -0.87 -0.30

AXP 0.00 -0.45 -0.35 -0.32 -0.17
JPM -0.35 -0.46 -0.55 -0.19 -0.32
Mean -0.48 -0.45 -0.40 -0.37 -0.24

The table reports the population average
hold-to-expiration returns for 29 equity put
options divided into five moneyness groups,
from 8% OTM to ATM.
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Table 3: Average Sharpe Ratios for Put Returns
Moneyness: K/St

Ticker 0.92 0.94 0.96 0.98 1.00
JNJ -5.30 -4.87 -0.22 -0.58 -0.39
KO -0.56 -0.24 -0.24 -0.21 -0.02
PG -0.66 -0.42 -0.16 -0.24 -0.18

MCD -0.22 -0.35 -0.13 -0.13 -0.11
WMT -0.22 -0.32 -0.86 -0.25 -0.32
PFE -0.59 -1.70 -0.42 -0.10 -0.01

MMM -0.26 -0.32 -1.06 -0.28 -0.28
TRV 0.09 -0.40 -0.09 -0.12 -0.70
VZ -0.33 -0.87 -0.43 -0.23 -0.16

UTX -1.25 -0.13 -0.22 -0.37 -0.11
MRK -0.23 0.04 -0.31 -0.72 -0.49
IBM -0.04 -0.20 -0.04 -0.14 -0.23
CVX -0.10 -0.18 -0.14 -0.08 -0.09
DD -0.27 -0.34 -0.33 -0.24 -0.21
T -0.07 -0.39 -0.48 -0.60 -0.18

XOM -0.48 -0.10 -0.42 -0.39 -0.22
BA -0.61 -0.08 -0.32 -0.14 -0.08

HPQ -0.42 -0.05 -0.14 -0.23 -0.09
BAC -0.11 -0.39 -0.20 -0.51 -0.17
DIS -0.35 -1.29 -1.01 -0.48 -0.33

MSFT -1.71 -0.37 -0.55 -0.54 -0.32
CSCO -0.74 -0.07 -0.20 -0.40 -0.37
INTC -0.28 -0.27 -0.12 -0.19 -0.02
CAT -1.53 -0.21 -0.91 -0.24 -0.73
GE -0.76 -0.69 -0.15 -0.11 -0.17
HD -0.22 -0.56 -0.44 -0.43 -0.03
AA 0.03 -0.11 0.11 -3.08 -0.27

AXP -0.01 -0.32 -0.23 -0.21 -0.16
JPM -0.18 -0.30 -0.52 -0.14 -0.32
Mean -0.60 -0.53 -0.35 -0.39 -0.23

The table reports the population Sharpe ra-
tios for 29 equity put options divided into five
moneyness groups, from 8% OTM to ATM.
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Table 4: Simulated Hold-to-Expiration Put Returns
MoneynessK/St

Ticker 0.92 0.94 0.96 0.98 1.00
JNJ -0.57 -0.47 -0.38 -0.29 -0.22
KO -0.53 -0.43 -0.34 -0.27 -0.21
PG -0.59 -0.49 -0.40 -0.32 -0.24

MCD -0.53 -0.44 -0.36 -0.29 -0.23
WMT -0.52 -0.43 -0.35 -0.28 -0.23
PFE -0.48 -0.41 -0.34 -0.28 -0.23

MMM -0.50 -0.41 -0.33 -0.26 -0.20
TRV -0.51 -0.44 -0.37 -0.31 -0.26
VZ -0.51 -0.42 -0.34 -0.27 -0.21

UTX -0.53 -0.45 -0.39 -0.33 -0.28
MRK -0.51 -0.44 -0.36 -0.30 -0.25
IBM -0.48 -0.41 -0.34 -0.29 -0.24
CVX -0.59 -0.52 -0.43 -0.35 -0.29
DD -0.44 -0.36 -0.29 -0.23 -0.19
T -0.44 -0.36 -0.29 -0.23 -0.18

XOM -0.59 -0.51 -0.44 -0.38 -0.32
BA -0.46 -0.39 -0.33 -0.28 -0.23

HPQ -0.35 -0.30 -0.26 -0.22 -0.19
BAC -0.34 -0.29 -0.24 -0.20 -0.16
DIS -0.38 -0.31 -0.26 -0.21 -0.17

MSFT -0.43 -0.37 -0.31 -0.26 -0.22
CSCO -0.36 -0.31 -0.27 -0.23 -0.19
INTC -0.34 -0.30 -0.26 -0.22 -0.19
CAT -0.43 -0.37 -0.31 -0.27 -0.23
GE -0.41 -0.34 -0.28 -0.23 -0.18
HD -0.41 -0.36 -0.30 -0.26 -0.22
AA -0.29 -0.24 -0.20 -0.17 -0.14

AXP -0.37 -0.32 -0.28 -0.24 -0.21
JPM -0.39 -0.34 -0.30 -0.26 -0.22

Mean -0.46 -0.39 -0.32 -0.27 -0.22

I use Monte Carlo simulation to compute the
distribution of average returns for equity put
options. I simulate N = 10000 times of index
and 29 equities levels using Milstein scheme
simulation. It is assumed that all risk pre-
miums (except for the equity premium) are
equal to zero.
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Table 5: Simulated Sharpe Ratios for Put Returns
MoneynessK/St

Ticker 0.92 0.94 0.96 0.98 1.00
JNJ -0.36 -0.31 -0.27 -0.24 -0.21
KO -0.33 -0.29 -0.25 -0.22 -0.19
PG -0.40 -0.35 -0.30 -0.26 -0.23

MCD -0.36 -0.32 -0.28 -0.24 -0.22
WMT -0.35 -0.31 -0.28 -0.24 -0.21
PFE -0.32 -0.28 -0.26 -0.23 -0.21

MMM -0.31 -0.27 -0.24 -0.21 -0.19
TRV -0.35 -0.31 -0.29 -0.27 -0.24
VZ -0.34 -0.30 -0.26 -0.23 -0.20

UTX -0.36 -0.33 -0.30 -0.28 -0.26
MRK -0.35 -0.32 -0.28 -0.26 -0.23
IBM -0.32 -0.29 -0.26 -0.24 -0.22
CVX -0.43 -0.39 -0.35 -0.31 -0.28
DD -0.27 -0.24 -0.21 -0.19 -0.17
T -0.28 -0.25 -0.22 -0.19 -0.17

XOM -0.41 -0.38 -0.36 -0.33 -0.31
BA -0.31 -0.28 -0.26 -0.24 -0.22

HPQ -0.24 -0.22 -0.20 -0.19 -0.18
BAC -0.22 -0.20 -0.18 -0.17 -0.16
DIS -0.23 -0.21 -0.19 -0.17 -0.16

MSFT -0.29 -0.26 -0.24 -0.22 -0.21
CSCO -0.26 -0.24 -0.22 -0.20 -0.19
INTC -0.23 -0.21 -0.20 -0.19 -0.18
CAT -0.27 -0.26 -0.24 -0.22 -0.21
GE -0.25 -0.23 -0.21 -0.19 -0.17
HD -0.27 -0.25 -0.23 -0.22 -0.20
AA -0.18 -0.17 -0.16 -0.15 -0.14

AXP -0.23 -0.22 -0.21 -0.20 -0.19
JPM -0.26 -0.24 -0.23 -0.22 -0.21

mean -0.30 -0.27 -0.25 -0.23 -0.21

I use Monte Carlo simulation to compute the
distribution of Sharpe ratios for equity put
options. I simulate N = 10000 times of index
and 29 equities levels using Milstein scheme
simulation. It is assumed that all risk pre-
miums (except for the equity premium) are
equal to zero.
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Table 6: Average Put Returns, Sharpe Ratios, and P-values

Moneyness: K/St
0.92 0.94 0.96 0.98 1.00

Data -0.48 -0.45 -0.40 -0.37 -0.24
Returns Model -0.46 -0.39 -0.32 -0.27 -0.22

P-value % 75.3 19.7 7.2 0.5 56.4

Data -0.60 -0.53 -0.35 -0.39 -0.23
Sharpe Ratios Model -0.30 -0.27 -0.25 -0.23 -0.21

P-value % 11.8 12.9 5.8 10.6 42.3

The top panel of Table 6 summarizes the average returns for put op-
tions of 29 equities for various strikes. The p-values are computed
based on the distributions of simulations and actual data. The dis-
tributions were constructed from 10,000 simulations for each of the
stocks. The bottom panel reports the similar metrics for Sharpe Ra-
tios.
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Table 7: Ex Ante Skewness Measure
Moneyness = 0.96

Maturity 2 weeks 1 month 2 months
JNJ 3.57 2.88 2.49
KO 3.41 2.79 2.45
PG 3.56 2.90 2.53

MCD 3.19 2.67 2.38
WMT 3.12 2.62 2.33
PFE 3.08 2.62 2.37

MMM 3.34 2.78 2.47
TRV 3.11 2.68 2.46
VZ 3.11 2.60 2.30

UTX 3.26 2.81 2.61
MRK 3.12 2.64 2.38
IBM 3.07 2.66 2.47
CVX 3.42 2.83 2.51
DD 3.08 2.62 2.37
T 2.98 2.49 2.18

XOM 3.53 2.92 2.61
BA 2.95 2.57 2.37

HPQ 2.57 2.27 2.10
BAC 2.62 2.31 2.12
DIS 2.91 2.52 2.32

MSFT 2.89 2.53 2.36
CSCO 2.47 2.19 2.03
INTC 2.61 2.34 2.21
CAT 2.91 2.58 2.44
GE 2.93 2.53 2.32
HD 2.86 2.52 2.35
AA 2.54 2.25 2.08

AXP 2.78 2.50 2.40
JPM 2.74 2.46 2.34

This table illustrates the distribution of put
option ex ante skewness for fixed moneyness
(K/S = 0.96) with five different maturities.
The ex ante skewness is computed based on the
parameters from β-Heston model
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Table 9: Table 9 Hold-to-Expiration delta-hedged return

Total Volatility Idiosyncratic Volatility
Volatility Quintile Dat % Sim % p-value Dat % Sim % p-value

Low -0.34 -0.74 0.02 -0.63 -0.82 0.03
2 -0.69 -0.88 0.97 -0.51 -0.96 0.62
3 -0.82 -0.94 0.55 -0.82 -0.99 0.39
4 -0.62 -1.17 0.09 -0.74 -0.98 0.76

High -1.94 -1.18 0.00 -1.72 -1.14 0.00
Mean -0.89 -0.82 0.71 -0.89 -0.85 0.68

Low-High 1.61 0.44 1.09 0.32
(t-stat) (5.04) (12.68) (2.96) (9.65)

Table 9 summarize the delta-hedged portfolio returns from actual data and sim-
ulations based on two sorting criteria: Total volatility and Idiosyncratic volatility.
The portfolio is constructed by sorting the underlying total/idiosyncratic volatility.
At the maturity of the put option, I rank the strategy returns into five quintiles
based on the underlying idiosyncratic volatility (same procedures are repeated for
total volatility). Note that the simulated portfolio returns are sorting based on total

long-term volatility
√
θj + β2

j · θi and idiosyncratic long-term volatility
√
θj .
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