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Abstract

I derive a new formula that expresses the measures of covariance, co-

skewness, and co-kurtosis risk in terms of market risk-neutral moments

and co-moments between stock and index returns. I then use the

forward-looking information contained in the option prices to estimate

option-implied moments and higher-moment correlations in order to

construct market risk betas, co-skewness betas, and co-kurtosis betas.

The empirical analysis suggests the following findings: compared to

regression-based standard competitors, such as CAPM, the method

that I have devised performs better in terms of mean squared error

and R2. An out-of-sample analysis of factor models incorporating

co-skewness and co-kurtosis risk premium indicates that the new risk

measures improve the return prediction. My results suggest that using

option market information improves asset pricing in terms of model

fit as well as out-of-sample forecasting power.

1 Introduction

The specification and estimation of factor models is of paramount impor-

tance for research and practice, and the methods of doing so are still debat-
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able. The linear form of the risk-return relation suggested by the Capital

Asset Pricing Model (CAPM) has been criticized based from different per-

spectives. The empirical findings in the literature contradict one of the fun-

damental principles in finance—that higher risk is associated with a higher

expected return—posing as one of the major puzzles in finance literature.

Consequently, there is a widespread consensus that models with better ex-

planatory power are badly needed. Kraus and Litzenberger (1976) show that

if investors care about portfolio skewness, co-skewness (which is the corner-

stone of skewness) is relevant for asset pricing along with co-variation with

the market portfolio. Similarly, if investors care about portfolio kurtosis, co-

kurtosis is also relevant. I propose a new strategy to estimate the measures

of co-skewness and co-kurtosis risk from option prices, along with the price

of the corresponding risk, which can be used to forecast asset returns. The

method is naturally forward-looking; thus, it avoids problems inherent to the

use of cross-sectional regressions.

Risk premium is obviously a forward-looking concept. In essence, it com-

pensates investors for holding an asset that will yield an uncertain return.

In practice, however, the most commonly used method for estimating the

risk premium is based on time series data. Conceptually, using historical ex-

cess return relies on the belief that noise will be canceled out in the long run.

Thus, using historical risk premium is subject to the trade off between reflect-

ing recent market condition and estimation accuracy. Merton (1980) argues

that the historical risk premium fails to account for the effect of changes in

the market risk.

Christofferssen et al. (2016) propose a new strategy to estimate the price

of co-skewness and co-kurtosis risk from option prices that avoids problems

inherent to the use of two-stage cross-sectional regressions. They show that
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the price of co-skewness risk corresponds to the spread between the physical

and risk-neutral second moment, which is the market variance risk premium.

In addition, the price of co-kurtosis risk is given by the spread between

the physical and risk-neutral third moment, which is the market skewness

risk premium. The information needed to pin down the price of risk comes

from option prices, which are naturally time-varying and forward-looking.

In simple terms, when moving into a volatile phase, investors are subject

to higher uncertainty, and therefore a forward-looking risk premium should

become higher. Then immediate price changes could be observed in the

option market, while a historically-based estimation cannot be expected to

reflect the changing market conditions.

Although it is appealing to consider co-skewness and co-kurtosis risk in

cross-sectional asset pricing, there is no widespread consensus on their em-

pirical relevance. This has been shown even in the simplest case when only

covariance risk is considered : the CAPM has been heavily tested over the

years; however, it has often been rejected. For instance, studies by Lakon-

ishok and Sharpiro (1986), and Fama and French (1992) find no relation

between market beta and average returns during the 1963-1990 period; fur-

ther, recently, Baker, Bradley, and Wurgler (2011) show that high-beta stocks

significantly underperform low-beta stocks.

Existing techniques for beta estimation use historical returns. These

methods thus assume that the future will be sufficiently similar to the past,

justifying simple extrapolation of current or lagged betas. However, no mat-

ter how sophisticated the modeling of time-variation in the betas, they are

not able to capture sudden changes in the market. In this paper, I use option-

implied information to estimate the exposure to co-skewness and co-kurtosis

risk (namely, co-skewness beta and co-kurtosis beta, respectively). Option
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prices are inherently forward-looking and therefore contain valuable informa-

tion of the future betas as opposed to the lagged ones. These measures can

be computed using option data on a single day and, therefore, it is potentially

possible to reflect sudden changes in the structure of underlying companies.

There is a growing amount of literature about extracting information

from the option market to forecast asset returns and volatilities. Bakshi

and Madan (2000) propose a model-free method to estimate the risk-neutral

moments of underlying from option prices. For instance, Conrad, Dittmar,

and Ghysels (2013) use option prices to estimate ex ante higher moments

of risk-neutral returns distribution of underlying individual securities. They

find that securities’ risk-neutral volatility, skewness, and kurtosis are strongly

related to the future returns. Many studies have demonstrated that option-

implied volatility is a strong predictor of future volatility in equity markets.

Classic contributions in this field include the ones from Christensen and Prab-

hala (1998), as well as Blair, Poon, and Taylor (2001). The predictive power

of option-implied equity volatility has been confirmed recently by Busch,

Christensen, and Nielsen (2008), who compare option-implied forecasts with

state-of-the-art realized volatility forecasts.

To provide a completely forwarding-looking forecast of equity expected

returns, we also need to estimate the corresponding risk premium. The most

common way to do this is to calculate the average value of historical realized

returns for a given period. However, it is very likely that the risk premium,

reflecting a level of risk that is related to a different state of the world, will

not occur later in the sample. Elton (1999) points out that future work in

asset pricing should consider alternative ways to measure expected returns

other than relying on the ex-post realized returns.

Chalamandaris and Rompolis (2016) propose another method to solve
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this issue. They extend the theoretical model of Duan and Zhang (2014)

to a general system of equations that connects the cumulants of the physi-

cal distribution of any order to those of the risk-neutral cumulants through

the projected relative risk aversion coefficient (PRRAC). Clearly, investors

require a higher compensation to hold the market portfolio if a) they are

more risk averse; b) they expect that future returns would be more volatile,

more negatively skewed, and have a higher level of excess kurtosis. Another

implication of their method is that it restricts the shape discrepancy between

the physical and risk-neutral distributions by means of the PRRAC.

In this paper, I derive a new formula that expresses the measures of the

co-variance, co-skewness, and co-kurtosis risk in terms of the risk-neutral

moments of the market return and the higher order risk-neutral co-moments

between the market and individual stock returns. I show that, compared

to traditional regression-based methods, option-implied parameters perform

well empirically. One source of the inputs to the formula—risk-neutral mo-

ments are computed directly from option prices; this is forward-looking and

time varying. Another source of the inputs—risk-neutral co-moments are es-

timated by utilizing both information from stock return time series and the

option market. Consequently, my approach has several distinctive features

that separate it from conventional approaches.

First, because it is based on the current market prices instead of, for

instance, accounting information, it can be implemented in real time. In

principle, with the data available, we can update the parameters daily.

Second, my approach generates conditional forecasts at individual stock

level. Rather than providing a vague unconditional average expected return

on a portfolio of large value stocks, the new method is able to answer, for

example, “what is the expected return on Microsoft today?”.
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Third, the parameters have specific, quantitative expressions that can

be calculated using current market information. This is contrasted with

factor models, in which both factor loadings and factors are estimated from

time series data. The classical CAPM model requires forward-looking betas,

which, in reality, are estimated based on historical data. My method provides

a new perspective to solve this issue.

I empirically investigate the performance of my approach for the returns

of individual stock and portfolio. Based on the monthly data for the period

2005-2014, I find that my option-implied forward-looking betas outperform

regression-based estimates for both individual and portfolio returns. My

results also indicate that the higher moment (co-skewness and co-kurtosis)

risk premiums are priced in the cross-sectional asset returns. I further show

that, with option-implied estimates for the higher moment risk premium, the

predicted returns of portfolio are highly correlated with future realized ones.

This paper proceeds as follows. Section 2 gives a review of the method

that Christofferssen et al. (2016) used to estimate the price of co-skewness

and co-kurtosis risk. In Section 3, I derive the measures of co-skewness and

co-kurtosis risk in terms of index returns risk-neutral moments and covari-

ance, co-skewness, and co-kurtosis between individual equity returns and

market index returns. Section 4 presents the estimation strategy for risk-

neutral covariance, co-skewness, and co-kurtosis between equities and index

returns. Section 5 provides the empirical results for the in-sample fit. Section

6 investigates the estimation of option-implied higher moment risk premium.

Finally, Section 7 concludes.

6



2 The Price of Co-Skewness and Co-Kurtosis Risk

Absence of arbitrage implies the existence of a stochastic discount factor,

mt+1, that prices any asset with risky return, Rj,t+1, using the following

condition:

EP
t

[
(1 +Rj,t+1)mt+1

]
= 1 (1)

where EP
t (.) denotes the expectation under the physical measure. Assume

that the SDF can be written as a representative investor’s marginal rate of

substitution between current and future wealth. Under no arbitrage condi-

tion, the stochastic discount factor mt+1 must be nonnegative.

mt+1 =
U ′(Wt+1)

U ′(Wt)
, (2)

where U ′(.) is the marginal utility and W is the aggregate wealth. Since the

marginal rate of substitution is not directly observable, to obtain testable re-

strictions from this first order condition, we usually define observable proxies

for the marginal rate of substitution. Different proxies for the marginal rate

of substitution and mechanisms have been proposed in different asset pricing

models during the last four decades. Researchers use either observed returns

of financial assets such as equity portfolios or non-market variables such as

growth rate in aggregate consumption as the proxies for the marginal rate of

substitution. Its form and specification is determined jointly by the assump-

tions about preferences and distribution of the proxies. As been pointed out

by Harvey and Siddique (2000), the specification for the marginal rate of

substitution can be viewed as a restriction on the set of trading strategies

that the investors can use to maximize their utility.

Arrow (1971) argues that the desirable properties for an investors’ utility

function are (a) positive marginal utility for wealth, (b) decreasing marginal
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utility for wealth, and (c) non-increasing absolute risk aversion. The set of

utility functions displaying these attributes are logarithmic, power and neg-

ative exponential utility functions. Since the exact form of utility function is

unknown, they can be expanded as Taylor series:

mt+1 ≈ h0 + h1
U ′′

U ′
Rm,t+1 + h2

U ′′′

U ′
R2
m,t+1 + ..., (3)

where Rm,t+1 is the stock market return, which Christoffersen et al. (2016)

used as a proxy for the return on the wealth portfolio. From equation (1),

we have EP
t (mt+1) = 1

1+Rf,t
for the risk-free rate, which gives

1

(1 +Rf,t)
≈ h0 + h1

U ′′

U ′
EP
t (Rm,t+1) + h2

U ′′′

U ′
EP
t (R2

m,t+1) + ... (4)

Combining equation (1) and (3), we can write the following form for the SDF

mt+1 = at + b1,t

(
Rm,t+1 − EP

t (Rm,t+1)
)

+b2,t

(
R2
m,t+1 − EP

t (R2
m,t+1)

)
+ b3,t

(
R3
m,t+1 − EP

t (R3
m,t+1)

) (5)

equation(???) shows that the stochastic discount factor is cubic in the mar-

ket return. The cubic form is consistent with investor’s preference for higher

order moments, such as skewness and kurtosis. In this case, the expected

excess return will be related to co-kurtosis risk, apart from covariance risk

and co-skewness risk. Dittmar (2002) explains that kurtosis measure the

possibility of extreme values and co-kurtosis captures the sensitivity of asset

returns to extreme market returns. if investors are averse to extreme values,

they need compensation for holding co-kurtosis risk, in other word, the price

of co-kurtosis risk should be positive.

As discussed by Harvey and Siddique (2000), in the traditional CAPM
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world, there are usually two routes: (a) A two-period world with homoge-

neous agents, where the representative agent’s derived utility function (in

wealth) is quadratic or logarithmic which guarantee that the discount factor

is linear in the value-weighted portfolio of wealth; (b) Make distributional

assumptions on the asset returns, which also keep the discount factor is linear

in the value-weighted portfolio of wealth. The assumption that the SDF is

linear in the market return produces the classic CAPM model.

Christoffersen et al. (2016) propose that in the absence of arbitrage, if

the SDF has the form as equation (5), then the cross-sectional restriction on

stock returns is

EP
t (Rj,t+1)−Rf,t = λMKT

t βMKT
j,t + λCOSKt γCOSKj,t + λCOKUt δCOKUj,t (6)

The prices of the covariance risk, λMKT
t , co-skewness risk λCOSKt and co-

kurtosis risk, λCOKUt , are

λMKT
t = EP

t (Rm,t+1)−Rf,t, (7)

λCOSKt = EP
t (R2

m,t+1)− EQ
t (R2

m,t+1) (8)

λCOKUt = EP
t (R3

m,t+1)− EQ
t (R3

m,t+1) (9)

The model shows that the price of co-skewness risk is corresponding to the

spread between the physical and the risk-neutral second moments of the mar-

ket return. There is quite a number of studies in the literature for modeling

the physical volatility of stock returns and estimating variance risk premium

(e.g., Carr and Wu 2009). Bakshi and Madan (2006) also relate the volatil-

ity spread to risk aversion, Driessen, Maenhout and Vilkov (2009) study the

price of correlation risk based on risk-neutral variance of index and its com-
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ponents.

Empirical studies conclude that the physical variance is lower than the

risk-neutral variance, indicating a negative price of co-skewness risk (for in-

stance, Bollerslev, Tauchen, and Zhou (2009), Bakshi and Madan (2006),

and Jackwerth and Rubinstein (1996)). A negative price of co-skewness risk

is intuitive: assets with lower co-skewness decrease the total skewness of

the portfolio (more negative), and increase the probability of extreme losses.

Thus, assets with lower co-skewness should have higher risk premium by the

risk averse investors.

The price of co-kurtosis is equal to the spread between the risk-neutral

and physical third moments. Current literature indicate that the risk-neutral

distribution of index return is more left skewed than the physical ones, in-

dicating a positive price of co-kurtosis risk. This is again consistent with

theory, similar logic of covariance risk premium can apply here.

3 The Measures of Co-Skewness and Co-Kurtosis Risk

The usual way to estimate the measures of co-skewness and co-kurtosis risk

is in a multivariate regression framework. However, in the following propo-

sition, I show that these measures can be analytically solved by a system of

linear equations, in terms of risk-neutral moments and co-moments of index

and equity returns.

Proposition 1. If the cross-sectional pricing restrictions are

EP
t (Rj,t+1)−Rf,t = λMKT

t βMKT
j,t + λCOSKt βCOSKj,t + λCOKUt βCOKUj,t , (10)

and the prices of the covariance risk, λMKT
t , co-skewness risk λCOSKt and
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co-kurtosis risk, λCOKUt , are defined as

λMKT
t = EP

t (Rm,t+1)−Rf,t, (11)

λCOSKt = EP
t (R2

m,t+1)− EQ
t (R2

m,t+1) (12)

λCOKUt = EP
t (R3

m,t+1)− EQ
t (R3

m,t+1) (13)

Then measures of the corresponding risk are solved by the following system
linear equations


EQ[(R̃j − R̄j)(R̃m − R̄m)]

EQ[(R̃j − R̄j)(R̃m − R̄m)2]

EQ[(R̃j − R̄j)(R̃m − R̄m)3]

 =


km,2 km,3 km,4

km,3 km,4 − k2m,2 km,5 − km,3 · km,2

km,4 km,5 − km,2 · km,3 km,6 − k2m,3

 ·

βMKT
j

γCOSK
j

δCOKU
j



where km,n = EQ[(R̃m − R̄m)n].

The exact solution for betas can be found in Appendix A.

Proof. We could express equation (10) as (drop time subscript):

R̃j −Rf = cj + βMKT
j

(
R̃m −Rf

)
+ βCOSKj

(
R̃m − R̄m

)2

+βCOSKj

(
R̃m − R̄m

)3
+ ẽj

(14)

where R̄i denotes the EQ[Ri] for i ∈ {j,m}, and the zero-mean error term,

ẽj is assumed to be independent of R̃m −Rf , (R̃m − R̄m)2 and (R̃m − R̄m)3;

Indeed, if we take expectation under physical measure of equation (14), write

[cj] in terms of physical and risk-neutral moments of Rm, we could find the

link (equivalence) between equation (10) and (14). Take the expectation of
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equation (14) under risk-neutral measure, subtracted from itself:

(10)− EQ[(10)]⇒ R̃j − R̄j = βMKT
j (R̃m − R̄m)+

γCOSKj {(R̃m − R̄m)2 − km,2}+ δCOKUj {(R̃m − R̄m)3 − km,3}
(15)

where km,n = EQ[(R̃m − R̄m)n], the nth-moment under risk-neutral measure.

Multiply equation (15) both sides by (R̃m − R̄m), and take the expectation

under Q:

EQ[(R̃j − R̄j)(R̃m − R̄m)] = βMKT
j km,2 + γCOSKj km,3 + δCOKUj km,4 (16)

on the left side of equation (16), it is just the RN covariance between individ-

ual stock return Rj and market index return Rm. Repeat previous procedure,

multiply equation (15) both sides by (R̃m − R̄m)2 and (R̃m − R̄m)3, respec-

tively, then take the expectation, so that we have equation (17) and (18):

EQ[(R̃j − R̄j)(R̃m − R̄m)2] = βMKT
j km,3+

γCOSKj (km,4 − k2
m,2) + δCOKUj (km,5 − km,3 · km,2)

(17)

on the left side of the equation (17), it is the risk-neutral co-skewness.

EQ[(R̃j − R̄j)(R̃m − R̄m)3] = βMKT
j km,4+

γCOSKj (km,5 − km,2 · km,3) + δCOKUj (km,6 − k2
m,3)

(18)

on the left side of the equation (18), it is the risk-neutral co-kurtosis. Com-

bine equation (16), (17) and (18), we could express βMKT
j , βCOSKj and βCOKUj

in terms of risk-neural moments (which can be approximated by OTM option

prices, see Appendix) and covariance, co-skewness and co-kurtosis.

First to note that, as the pricing restriction (equation 10) is a natural exten-
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sion to CAPM model, so is the measurement of corresponding risk. To see

this, considering in a world when skewness and kurtosis risk is not priced,

drop the high-moment related item in the matrix, we could have the expres-

sion for market Beta, βMKT
j =

cov(Rj ,Rm)

var(Rm)
. It is exactly the same as CAPM

model.

The parameters βMKT
i,t , βCOSKi,t and βCOKUi,t , are functions of the market higher

order moments (variance, skewness, kurtosis, etc), covariance, co-skewness

and co-kurtosis, illustrate the relationship between my model and the Kraus

and Litzenberger (1976) three-moment CAPM as well as Harvey and Sid-

dique (2000) conditional skewness measure. It provides a testable restriction

imposed on the cross section of asset expected returns from the asset pricing

model incorporating skewness and kurtosis risk.

Empirical studies conclude that no one model solves the asset pricing puz-

zle and different combinations of factors work for different settings. Thus,

in this paper, I proposed an asset pricing model that is a combination of

the multifactor model with nonlinear components derived from asset return

(co)skewness and (co)kurtosis. This is also consistent with Ghysels (1998)

that nonlinear multi factor models behave better than linear beta model in

the empirical studies.

3.1 General Case

Although there is relatively little research about the sign of terms in the

SDF higher than third order. Christoffersen et.al (2016) give a more general

nonlinearities form in the SDF, and its corresponding pricing model. if the
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stochastic discount factor (SDF) has the following form:

mt+1 = at+
∑
n

bk,t
(
Gn(Rm,t+1)−EP

t [Gn(Rm,t+1)]
)
+
∑
l

cl,t
(
fl,t+1−EP

t (fl,t+1)
)
,

(19)

then the cross sectional pricing restrictions are

EP
t (Rj,t+1)−Rf =

∑
n

λnt β
n
j,t +

∑
l

γltβ
l
j,t (20)

and

EP
t (Ri,t+1)−Rf =

∑
n

λnt β
n
i,t +

∑
l

γltβ
l
i,t, (21)

where the βnt and βlt are from the projection of asset returns on Gn(Rm,t+1)

and fl,t+1 respectively, and γl is the price of risk associated with the factor

fl. The price of corresponding risk associated with market return λnt , is

λnt = EP
t

(
Gn(Rm,t+1)

)
− EQ

t

(
Gn(Rm,t+1)

)
, (22)

where EP
t (.) and EQ

t (.) denote the expectation under the physical and risk-

neutral probability measure.

Proposition 2. If the pricing restriction is in the form of equation (19),
then the measures of the corresponding risk β can be calculated from following
equation set, km,n = EQ[(R̃m − R̄m)n]:



EQ[(R̃j − R̄j)(R̃m − R̄m)]

EQ[(R̃j − R̄j)(R̃m − R̄m)2]

...

EQ[(R̃j − R̄j)(R̃m − R̄m)n]


=



km,2 km,3 km,4

km,3 km,4 − k2m,2 km,5 − km,3 · km,2

... ... ...

km,n km,n+2 − km,2 · km,n km,k+3 − km,3 · km,n


·



βMKT
j

βCOSK
j

...

β
COnth
j



Proof. The structure of the proof is similar to the proof of Proposition 1.

The only extension is to multiply equation (15) both sides by (R̃m − R̄m)n,
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then apply the same procedure described in the proof of Proposition 1.

4 Implied Moments and Correlation

In order to estimate the betas in equation (10), we need the conditional

moments-co-moments (e.g., variance-covariance matrix) of the factors and

vector of the conditional co-moments between the factors and the stock re-

turns. The usual way to estimate these parameters is using historical stock

returns. Nevertheless, what we really need the is the conditional moments-

co-moments matrix, the use of historical data implies that the future is suf-

ficiently similar to the past.

Instead of using solely the historical time series of the stock returns, we

can estimate these moments from option prices, and use these information to

construct the beta-parameters. There is a long history of using option implied

information to forecast expected/future realized moments. For instance, the

implied volatility of Black and Scholes (1973), or model free option implied

moments of Britten-Jones and Neuberger (2000) and Bakshi, Kapadia, and

Madan (2003).

The reason for using option implied information in the estimation is that

the option prices subsume the current market expectations about future stock

dynamics (e.g., Vanden (2008)), which is natural forward looking and time-

varying. As shown by Blair, Poon and Taylor (2001), the implied volatility

has better predictability for realized volatility in terms of R2. Thus, using

option-implied information in the parameters construction can potential in-

crease their predictability.

Risk-neutral moments for stock and index can be easily computed from

the observed option data. However, risk neutral co-moments pose a challenge,

15



regarding to modeling and estimation. Buss and Vilkov (2012) propose a pa-

rameter way to estimate implied correlations such that the correlation matrix

(a) meets all the necessary requirements of a correlation matrix (positive def-

inite with absolute pairwise correlation smaller than one), (b) satisfies the

identifying restriction that the weighted sum of index constituents implied

variance is equal to the implied variance of the index. They use historical

rolling window correlations (computed from daily and monthly returns) as in-

put to the identification procedure of the implied correlations. In Appendix

C, I illustrate the extended version of Buss and Vilkov (2012) method, to

construct the estimates for the co-moments.

5 Data Description

This study is based on the major U.S. market proxy, the S&P100 index, and

its constituents for period from January 4, 2005 to November 31, 2014. In

section 5.1, I will briefly describe the stock and option data. In section 5.2,

I introduce the estimation method for realized and option-implied measures.

5.1 Stock and Option Data

The daily stock data consist of prices (close price) and number of shares out-

standing, plus S&P 100 index prices from OptionMetrics database. Sorted

by cusip, there are total 203 names in the data, as the index constituents

are changing through the time. The index weights are calculated using the

closing market capitalization of all current index components on the previous

day.

The data for equity and index options are also obtained from Option-

Metrics Volatility Surface that provides Black-Scholes implied volatilities for
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options with standard maturities and moneyness level. As we are interested

in most liquid options and also considering underlying stock investment hori-

zon, I use options with approximately one month to maturity. I select out-

of-the-money (OTM) as well as at-the-money (ATM) call and put options

with this maturity. As the purpose of using options is not as instruments for

trading, but as an information source only. Even if the OTM options are not

so liquid some time, it is not be a big issue here.

5.2 Variance, Skewness and Kurtosis Estimation

I estimate the realized (co)variance, (co)skewness and (co)kurtosis as central

moments from daily returns using the rolling window methodology with six

months and one year window length.

For the risk-neutral moments, the model-free methodology is very wel-

come in the literature. Recent studies (e.g., Bakshi and Madan (2006), Carr

and Lee (2009), Carr and Wu (2009)) show that the risk-neutral expected

variance is best approximated by the model-free implied variance (MFIV).

Give the fact the MFIV method extracts information from all existing

options expiring on one date and does not reply on any parametric model

(while there is minor assumption on the stock process), I use this method to

estimate all the risk-neutral moments needed in this paper (See Appendix

for more detailed information). As pointed out by Carr and Wu (2006), the

MFIV method is also chosen by practitioner to trade CBOE VIX.

5.3 Parameters Estimation

The empirical part of my study is to show that option-implied betas deliver a

better result regarding asset pricing (measured by squared error or R-square).

The reason behind this is that we managed to extract information about fu-
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ture dynamics from the option market as well as the information contained

in the history of stock return time series.

From Proposition 1, we can have analytical closed form solution for be-

tas as long as we have the following components: risk-neutral moments and

risk-neutral co-moments. RN moments are estimated based on the Bakshi

and Madan (2000) MFIM (model-free option-implied moments), more details

can be found in Appendix. Estimating RN co-moments are divided into two

parts: RN moments and RN correlations (include higher order correlations),

again, RN moments get be extracted from option prices; while for the cor-

relations, we need to build the bridge between the physical measure and the

risk-neutral measure. Buss and Vilkov (2012) propose a semi-parametric way

to model option-implied correlations, I extend their methods to higher order

correlations.

[Insert Table 2 here]

Table 2 provides the summary statistics for market beta, co-skewness beta

and co-kurtosis beta. The sample period spans from August 2005 to Novem-

ber 2014. For each month I compute three betas for all stock in the S&P100

index. The table reports the time-series median of these statistic. Additional,

since option-implied method is able to capture the sudden change in the mar-

ket, the ex-ante betas are more volatile then the ones from regression-based

method, their distribution consequently is more skewed. Thus, I pool all the

betas across time and stocks, and compute the 5%, 20%, 40%, 60%, 80%

and 95% observation. Even tough these betas are calculated using option-

implied information instead of estimated from regression based method, still

the value range of βMKT s is quite reasonable (For instance, the median of

the market risk beta during the whole sample period is 1.08). The value for

co-skewness betas and co-kurtosis betas are much larger, it is intuitive given
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the fact that the corresponding premium is much smaller in scale.

5.4 In-Sample Fitting

Once we have these forward looking parameters, if we are interested in the

expected stock return, we still need corresponding risk premium. These

risk premium, defined as the difference between the physical and the risk-

neutral measure of the first three expected return moments. It is relatively

straightforward to estimate the risk-neutral cumulants, using the model-free

method proposed by Bakshi and Madan (2000). However, for the physical

moments estimation, varies models/methods have been proposed to forecast

the market premium and variance/volatility, there is no such consensus about

which method to use. I will discuss this issue in the next section. At this

section, we are only interested to see whether option-implied information is

able to improve asset pricing, thus I run cross sectional regression to estimate

the risk premium for each of the month. The sum of the squared residual

is calculated and compared with the classical asset pricing model/method in

the literature.

[Insert Table 3 here]

Table 3 shows the comparison between my method OiCCC (Option implied

Measures of covariance-co-skewness-co-kurtosis risk) and other classical as-

set pricing models, CAPM3Y and CAPM5Y stand for CAPM model with

three-year and five-year monthly moving window, respectively. regCCC3Y

and regCCC5Y stand for regression based covariance-co-skewness-co-kurtosis

with three-year and five-year monthly moving window, respectively. The

CAPM and regCCC model are estimated using Fama-MacBeth two stage re-

gression, I first use moving-window method to estimate the beta(s) for each
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stock, then a cross-sectional regression is run to determine the risk premium

for each period: Rj,T −rf = cj+βMKT
j λMKT

T +βCOSKj λCOSKT +βCOKUj λCOKUT .

The sample period range from 2005.08 to 2014.11, with 112 month observa-

tion, cross-sectionally, we have 100 (S&P100 constituents, updated for each

of the month) stocks for each month. After the OLSregression estimation,

we have a 112*100 matrix of squared errorforeach method. Then for each

month and each benchmark method, I compare the aggregate squared error

(distribution) with the one from OiCCC, to see whether these benchmark

methods significantly (at 10% level, t≥1.65) perform better/worse (measured

by whether the MSE is higher or lower), and count the frequency. Panel A

reports the average mean square error (MSE) for monthly returns, average

cross-sectional R-square/adj. R-square and the frequencies that OiCCC out-

performs the benchmark methods. Panel B reports the frequency that all the

three premium (covariance-co-skewness-co-kurtosis) estimates are significant

in the cross-sectional fit. Table 3 shows that the benchmark asset pricing

methods very rarely outperform OiCCC while they are much frequently worse

than OiCCC. More than quintile of the time, OiCCC performs significantly

better than CAPM model, while the advantage shrinks when being compared

to regCCC model. Panel B shows the frequency that all three premium es-

timates are significantly different from zero. Empirically, there is no such

consensus about the significance of higher moment risk premium. Indeed,

that is the case when we use regression based method to estimate the betas

and then run cross-sectional regression to get the premium estimates. Panel

B shows that there is only approximately 5% to 7% of the times when all

three premium estimates are significant. Given this results, it is very natural

to empirically reject the pricing models with higher moment risk premium.

However, the frequency becomes much higher when using option-implied es-
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timation method. Though they may not be high enough (for example, over

90% of the time), still with a frequency around 41% (with p = 0.1), it can be

the supporting evidence that higher moment risk premium is priced in the

cross-sectional asset returns.

5.5 Portfolio Analysis

Individual stock returns are relatively difficult to model, empirically, peo-

ple are sometimes more interested in the portfolio return analysis/forecast.

However, in my case, due to the technical difficult, I only study 100 stock

returns for each time period, which means, in order to have sufficient number

of observation for cross-sectional regression practice, the portfolio should be

consist of 4 or 5 stocks.

In order to reflect the implied exposure of the corresponding risk for each

stocks, I construct the following four portfolios: 1. portfolio sort by market

beta; 2. portfolio sort by co-skewness beta; 3. portfolio sort by co-kurtosis

beta; 4. portfolio sort by aggregate risk exposure. Take 1st portfolio (sort by

market beta) as an example, for each month, I sort the stocks based on their

option-implied market beta, to form 20 portfolios. The first portfolio thereby

contains the stocks with the lowest market betas, and the last portfolio con-

tains the stocks with the highest market betas. The 4th portfolio (sort by

aggregate measures) is constructed differently. First, for each month, calcu-

late the percentile of ranking for each beta, aggregate risk measure (ARM)

is then defined as follows:

ARM = percentile(βMKT )− percentile(βCOSK) + percentile(βCOKU) (23)
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Note that a negative sign on the co-skewness beta is also consistent with

thoery, and with existing empirical studies that document a negative price

of co-skewness risk (for instance, KL (1976) and HS (2000)). This portfolio

sorting method is similar to the studies of Jensen, Black, and Scholes (1972),

Baker, Bradley, and Wurgler (2011) and Buss and Vilkov (2012). For each

portfolio, each month, and each methodology, I compute the equal-weighted

expected portfolio risk measures (market beta, co-skewness beta and co-

kurtosis beta) and realized portfolio return over the next month. Then I use

cross-sectional regression to access the portfolio fit, measured by R-square.

[Insert Table 4 here]

Like the individual stock return case, I use three pricing models as the bench-

mark, the only difference here is that since we are evaluating the the model

performance by the cross-sectional R-square, all of the benchmark models

are estimated by two-stage Fama-Macbeth style regression (first betas, then

premiums). Table 4 reports the mean R-square for each of the cross-sectional

regression, for each of the methodology. As the table shows, for all portfolio

construction methods, the OiCCC outperforms the other methods in a large

scale. Overall, multi-factors models behave better, even after adjust the de-

gree of freedom. OiCCC could relatively improve the adj.R-square by 100%

comparing to other multi-factor models, and its improvement is consistent

across different portfolios.

6 Estimating Physical Cumulants

In order to provide a completely forwarding-looking forecast of equity ex-

pected returns, we also need to estimate corresponding market premium. The

most common way to do that is to calculate the average value for historical
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realized returns for a given period. Simple as it be, it has several problems:

a) the average realized return is unconditional estimate. Given the fact that

varies studies document premium (expected returns) being time-varying and

persistent, indicating that the conditional ER is not very likely to be the same

as the ex-post unconditional one. b) The long-run average does not take into

account short-term changes in the market condition. It is very probable that

the risk premium, reflects the level of risk which is related to the different

state of the world will not occur in the sample later. Elton (1999) point out

that future work in asset pricing should consider alternative ways to measure

expected returns rather than relying on the ex-post realized returns.

There are different routes in the literature to solve this issue, for instance,

use survey on academics or investors to get their view on the ER. Another lit-

erature use information from stock and option markets, together with a para-

metric option pricing model (Santa-Clara and Yan(2010)) or semi-parametric

procedure (Duan and Zhang (2014)). Chalamandaris and Rompolis (2016)

extend the theoretical model of Duan and Zhang (2014) to a general system

of equations that connects the cumulants of the physical distribution of any

order to those of the risk-neutral cumulants through the projected relative

risk aversion coefficient (PRRAC).

The expected return of the market portfolio return is connected to higher-

order physical cumulants and PRRAC. It is quite intuitive, investors require

a higher compensation to hold the market portfolio if a) they are more risk

averse; b) they expect the future returns would be more volatile, more nega-

tive skewed and higher level of excess kurtosis. Another implication of their

method is that it restricts the shape discrepancy between the physical and

risk-neutral distributions by means of the PRRAC.
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6.1 Relationship Between Physical and Risk-Neutral

Moments

Chalamandaris and Rompolis (2016) propose a semi-parametric relationship

between physical and risk-neutral cumulants. Let kQt,n and kPt,n be the nth-

order cumulants of the τ period log-return rt,T distribution conditional on

the current market information under the physical P and risk-neutral Q

measure, respectively. Then, the relationship between physical cumulants

and risk-neutral ones:

kPt,n =
∞∑
m=0

kQt,n+m

γm

m!
, (24)

or in another form:

kQt,n =
∞∑
m=0

kPt,n+m

(−γ)m

m!
(25)

This is a general case of the well studied estimating physical moments from

the risk-neutral ones during previous year. For instance, Bakshi, Kapadia and

Madan (2003), Bakshi, Kapadia and Madan (2006) and Duan and Zhuang

(2014) give approximate counterparts of equation (24) and equation (25)

based on variance, skewness and kurtosis for n=3, n=2 and n=1, respectively.

Their proposition provides a framework that express the physical distribution

in terms of the risk-neutral ones and PRRAC γ. To see it intuitively, assume

the log-return rt,T follows the normal distribution, which implies that kPt,n = 0

for n > 2, then the market risk premium will be

kPt,1 − k
Q
t,1 = γkPt,2 (26)

which is a well-known result derived by CAPM and other models. It indi-

cates that knowledge of γ and higher-order risk-neutral moments provides

an estimate of the expected physical moments.
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We can further express risk premium, which is defined as the difference be-

tween physical and risk-neutral measure, in the following way:

λn = kPt,n − k
Q
t,n =

∞∑
m=1

kQt,n+m

γm

m!
, (27)

where λ1 denotes the market risk premium, λ2 and λ3 denote price of the

co-skewness and co-kurtosis risk, respectively.

6.2 Estimation of PRRAC coefficient

In order to estimate the PRRAC coefficient γ, we need to use the information

contained in the equations of (24) and (25). For instance, if we set n=2,

formula (24) and (25) lead to two similar expressions for the variance risk

premium,

kPt,2 − k
Q
t,2 = γkPt,3 −

γ2

2!
kPt,r +

γ3

3!
kPt,4 + ... (28)

and

kPt,2 − k
Q
t,2 = γkQt,3 −

γ2

2!
kQt,r +

γ3

3!
kQt,4 + ... (29)

The implication is interesting, it indicates that the variance risk premium

can be attributed to higher-order (higher than second) physical/risk-neutral

cumulants. As shown by several empirical researches, the negative variance

risk premium can be explained by negative skewness. Following Bakshi and

Madan (2006), we can implement a GMM method. Denote It−1 as the in-

formation set known at time t− 1. Then the orthogonality condition can be

expressed as

E
[
kP,Qt,N +

M∑
m=1

kPt,m+2,m+N

(−γ)m

m!
|It−1

]
= 0 (30)

where kP,Qt,N =
(
kPt,2 −K

Q
t,2, .., k

P
t,N − k

Q
t,N

)
and kPt,m+2,m+N =

(
kt,m+2, .., k

P
t,m+N

)
.
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6.3 Physical Moments and Forward-Looking Premium

Using the estimates of γ along with higher-order physical and RN cumu-

lants, we can calculate forward-looking market risk premium, co-skewness

and co-kurtosis risk premium for each month. I implement third-order ap-

proximation of formula 24 and 25 to estimate the ex-ante risk premium. Table

reports the descriptive statistics for the estimates of the moments and the

forward-looking premium. First, the market risk premium is always positive,

time-varying and counter-cyclical. It increases during the financial crisis pe-

riod, the sub-prime mortgage crisis, as expected. On average the co-skewness

risk premium is -0.0183 (RA = 3) and the co-kurtosis risk premium is 0.0022

(RA = 3). These results are consistent with theory and empirical results as

well. In addition, it is important to mention that these existing estimates are

usually mean of the price of risk over several years. Most of them use a two-

stage Fama-MacBeth (1973) setting and report the average estimates of the

monthly cross-sectional regression. It is likely that these prices of risk have

the opposite sign over shorter time horizon. The advantage of this method

is that we can have conditional monthly estimates of the price of risk that

have the theoretically expected sign in almost every month.

[Insert Table 5 here]

6.4 Forecast Portfolio Return

In the previous section, I introduce the method for estimating the betas

for the market risk, co-skewness risk and co-kurtosis risk, together with the

corresponding risk premium estimated in this section, we can forecast condi-

tional expected return for each stock and portfolio. I use the same method

(as the one used in model fit) to sort the stocks according to their aggregate
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risk exposure. I then compute the equal-weighted expected portfolio betas

(market beta, co-skewness beta and co-kurtosis beta) and multiply the price

of the corresponding risk to get expected portfolio return for each month.

I sort the portfolios into quintiles based on their expected return for each

month, and compute the equal-weighted mean realized return for each quin-

tile across all the time. The first quintile therefore contains the portfolios

with highest expected returns, and the last one contains the portfolios with

lowest expected returns. Additionally, I also use regression based method to

estimate betas for CCC (covariance-co-skewness-co-kurtosis model), denote

as regCCC, as a benchmark.

[Insert Table 6 here]

Table 6 reports the equal-weighted quintile return for different risk averse

(RA) coefficient. As we can see, the option-implied method (OiCCC) gen-

erates a monotonic relation across different quintiles, and its performance is

stable for different RA coefficients. While for regression based method, its re-

lation is more noisy across different quintiles. The return difference between

the extreme quintiles for OiCCC is about 10% (RA=4) annually, while it is

only 3% for regCCC.

7 Conclusion

In this paper, I derive a new formula that expresses the measures of the

co-variance, co-skewness and co-kurtosis risk in terms of the risk-neutral mo-

ments of the market return and the higher order risk-neutral co-moments

between market and individual stock returns. Then I show that compar-

ing to traditional regression based methods, these option implied parame-

ters perform well empirically. I empirically investigate the performance of
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my approach for the individual stock and portfolio asset pricing. Based on

the monthly data for the period 2005-2014, I find that my option-implied

forward-looking betas outperform regression-based estimates, for both indi-

vidual and portfolio returns. My results also indicate that the higher moment

(co-skewness and co-kurtosis) risk premium is priced in the cross-sectional

asset returns. I further show that, with an option implied estimates for the

higher moment risk premium, the forecast portfolio return is highly corre-

lated with future realized returns.
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A Analytical Solution of Betas

βMKT
t = −

((EQ[(R̃j − R̄j)(R̃m − R̄m)2
]
· (km,5 − km,2 · km,3) · km,4 − (km,4 − k2m,2) · EQ[(R̃j − R̄j)(R̃m − R̄m)3

]
· km,4 − EQ[(R̃j − R̄j)(R̃m − R̄m)

]
· (km,5 − km,2 · km,3)2

D

+
km,3 · EQ[(R̃j − R̄j)(R̃m − R̄m)3

]
(km,5 − km,2 · km,3)− EQ[(R̃j − R̄j)(R̃m − R̄m)2

]
km,3 · (km,6 − k2m,3) + EQ[(R̃j − R̄j)(R̃m − R̄m)

]
(km,4 − k2m,2) · (km,6 − k2m,3)

D

(31)

βCOSK
t = −

(−km,4 · EQ[(R̃j − R̄j)(R̃m − R̄m)2
]
· km,4 ·+km,3 · EQ[(R̃j − R̄j)(R̃m − R̄m)3

]
· km,4 + EQ[(R̃j − R̄j)(R̃m − R̄m)

]
· km,4 · (km,5 − km,2 · km,3)

D

−
km,2 · EQ[(R̃j − R̄j)(R̃m − R̄m)3

]
· (km,5 − km,2 · km,3)− EQ[(R̃j − R̄j)(R̃m − R̄m)

]
· km,3 · (km,6 − k2m,3) + km,2 · EQ[(R̃j − R̄j)(R̃m − R̄m)2

]
· (km,6 − k2m,3)

D

(32)

βCOKU
t = −

(−km,4 · EQ[(R̃j − R̄j)(R̃m − R̄m)2
]
· km,3 + EQ[(R̃j − R̄j)(R̃m − R̄m)

]
· km,4 · (km,4 − k2m,2)− EQ[(R̃j − R̄j)(R̃m − R̄m)

]
· km,3 · (km,5 − km,2 · km,3)

D

+
km,2 · EQ[(R̃j − R̄j)(R̃m − R̄m)2

]
(km,5 − km,2 · km,3) + km,3 · km,3 · EQ[(R̃j − R̄j)(R̃m − R̄m)3

]
− km,2 · (km,4 − k2m,2) · EQ[(R̃j − R̄j)(R̃m − R̄m)3

]
)

D

(33)

where

D = −km,4 · (km,4 − k2m,2) · km,4 + km,3 · (km,5 − km,2 · km,3) · km,4 + km,4 · km,3 · (km,5 − km,2 · km,3)

−km,2 · (km,5 − km,2 · km,3)2 − km,3 · km,3 · (km,6 − k2m,3) + km,2 · (km,4 − k2m,2) · (km,6 − k2m,3)
(34)

and km,n = EQ[(R̃m − R̄m)n].
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B Appendix: Model Free Option-Implied Moments

Bakshi, Carr and Madan (2000) show that any twice continuously differ-

entiable fnct, H(ST ), of terminal price ST , can be replicated by a unique

position in the risk-free, stocks and European options.

H[S] = H[S̄]+(S−S̄)Hs[S̄]+

∫ ∞
S̄

Hss[K](S−K)+dK+

∫ s̄

0

Hss[K](K−S)+dK

(35)

The prices of these contracts are

EQ
t {e−rτH[S]} = (H[S̄]− S̄Hs[S̄])e−rτ +Hs[s̄]S(t)+∫ ∞
s̄

Hss[K]C(t, τ ;K)dK +

∫ S̄

0

Hss[K]P (t, τ ;K)dK.
(36)

where Ct(τ,K) and Pt(τ,K) are prices of the European call and put options

with time to maturity τ and strike price K. As a result, we can calculate

the prices of derivatives given the price of the risk free zero coupon bond

r, the spot price of the underlying, S̄, and a series of OTM calls and puts.

Since our main interest would be underlying return distribution, consider the

function H[S]):

H[St+τ ] = R2
t+τ = (lnSt+τ − lnSt)2 (37)

Then the risk-neutral variance, skewness and kurtosis of equity returns

could be computed based on the following expressions.

EQ0

[
e−rT (

ST − S0

S0
)2
]

=
2

s2
0

[ ∫ S0

0
P0(T,X)dX +

∫ ∞
S0

C0(T,X)dX
]

(38)
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EQ0

[
e−rT (

ST − S0

S0
)3
]

=
6

S2
0

[ ∫ S0

0

(X − S0

S0

)
P0(T,X)dX+

∫ ∞
S0

(X − S0

S0

)
C0(T,X)dX

]
(39)

EQ0

[
e−rT (

ST − S0

S0
)4
]

=
12

S2
0

[ ∫ S0

0

(X − S0

S0

)2
P0(T,X)dX+

∫ ∞
S0

(X − S0

S0

)2
C0(T,X)dX

]
(40)

Since there is no continuity of strike prices, we can approximate the integrals using

cubic spline. For a given maturity, I interpolate implied volatilities across different

moneyness level (K/S) to obtain a continuum of implied volatilities. Furthermore,

the implied volatility of the highest or lowest available strike price is used when

moneyness below and above the available moneyness level in the market. More

precisely, for moneyness level smaller than 1 (K/S < 1), the corresponding implied

volatilities are used to generate put option prices, while for moneyness level larger

than 1 (K/S < 1), the corresponding implied volatilities are used to generate call

option prices.
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C Option Implied co-skewness and co-kurtosis

Start from covariance, which is indeed correlation (since moments are ”known”).

Buss and Vilkov (2012 RFS) proposed an option-based measure for ρQij,t

1. Consider market index I, with N components:

(σQI,t)
2 =

N∑
i=1

N∑
j=1

wiwjσ
Q
i,tσ

Q
j,tρ

Q
ij,t (41)

2. They propose the following parametric form for implied correlations ρQij,t:

ρQij,t = ρPij,t − αt(1− ρPij,t) (42)

3. Estimate ρPij,t from historical rolling windows, then compute αt, and identify

ρQij,t. Substitute the implied correlation (16) into restriction (15), one can

compute αt in closed form:

αt = −
(σQM,t)

2 −
∑N

i=1

∑N
j=1wiwjσ

Q
i,tσ

Q
j,tρ

P
ij,t∑N

i=1

∑N
j=1wiwjσ

Q
i,tσ

Q
j,t(1− ρPij,t)

(43)

4. In the end, we have the RN covariance:

CovQt (Rj , Rm) = σQj,t

N∑
i=1

wiσ
Q
i,tρ

Q
ij,t (44)

Similarly, I propose the following strategy to estimate the co-skewness:

1. Define the central co-skewness (third moment):

φijk = E[(ri − r̄i)(rj − r̄j)(rk − r̄k)], (45)

and skewness is a special case of co-skewness when i = j = k
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2. The skewness of the market index:

φQmmm =
∑
i

∑
j

∑
k

wiwjwkφ
Q
ijk (46)

3. Define Skewness Correlation

Kijk =
Sijk

2
√
φiii 4
√
φjjj

4
√
φkkk

(47)

4. Rewrite Equation (19):

φQmmm =
∑
i

∑
j

∑
k

wiwjwkK
Q
ijk

2

√
φQiii

4

√
φQjjjφ

Q
kkk (48)

5. Impose parametric relationship between KP
ijk and KQ

ijk:

KQ
ijk,t = KP

ijk,t + αt(1 +KP
ijk,t). (49)

6. Estimate KP
ijk from historical rolling data, identify the relationship param-

eter αt from index skewness (substitute equation (23) into restriction (22))

and then compute KQ
ijk accordingly. The expression for αt

αt =
φQmmm,t −

∑N
i=1

∑N
j=1

∑N
k=1wiwjwk

2

√
φQiii,t

4

√
φQjjj,tφ

Q
kkk,tK

P
ijk,t∑N

i=1

∑N
j=1

∑N
k=1wiwjwk

2

√
φQiii,t

4

√
φQjjj,tφ

Q
kkk,t(1−KP

ijk,t)
(50)

7. Recall that on the left side of equation (13), we have the co-skewness between

stock j and index m: SQjmm = E[(R̃j − R̄j)(R̃m − R̄m)2], now becomes:

SQjmm = 2

√
SQjjj

∑
i

∑
k

wiwkK
Q
ijk

4

√
SQiiiS

Q
kkk, (51)

with each of the components on the right side of equation (24) estimated,

the co-skewness SQjmm is acquired.
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The procedure for estimating co-kurtosis is analogous, just extend one more di-

mension.

1. Define the central co-kurtosis (fourth moment):

ψijkl = E[(ri − r̄i)(rj − r̄j)(rk − r̄k)(rl − r̄l)], (52)

and kurtosis is a special case of co-skewness when i = j = k = l

2. The kurtosis of the market index:

ψQmmmm =
∑
i

∑
j

∑
k

∑
l

wiwjwkwlψ
Q
ijkl (53)

3. Define Kurtosis Correlation

Kijkl =
ψijkl

4
√
ψiiii 4

√
ψjjjj

4
√
ψkkkk

4
√
ψllll

(54)

4. Rewrite Equation (26):

ψQmmmm =
∑
i

∑
j

∑
k

∑
l

wiwjwkwlK
Q
ijkl

4

√
ψQiiiiψ

Q
jjjjψ

Q
kkkkψ

Q
llll (55)

5. Impose parametric relationship between KP
ijkl and KQ

ijkl:

KQ
ijk,t = KP

ijk,t − αt(1−KP
ijk,t). (56)

6. Estimate KP
ijkl from historical rolling data, identify the relationship param-

eter αt from index kurtosis (substitute equation (23) into restriction (22))

and then compute KQ
ijkl accordingly:

αt =
ψQ
mmmm,t −

∑N
i=1

∑N
j=1

∑N
k=1

∑N
l=1 wiwjwkwl

4
√
ψQ
iiii,tψ

Q
jjjj,tψ

Q
kkkk,tψ

Q
llll,tK

P
ijkl,t∑N

i=1

∑N
j=1

∑N
k=1

∑N
l=1 wiwjwkwl

4
√
ψQ
iiii,tψ

Q
jjjj,tψ

Q
kkkk,tψ

Q
llll,t(1−K

P
ijkl,t)

(57)

7. Recall that on the left side of equation (13), we have the co-kurtosis between
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stock j and index m: SQjmmm = E[(R̃j − R̄j)(R̃m − R̄m)3], now becomes:

ψQjmmm = 4

√
φQjjjj

∑
i

∑
k

∑
l

wiwkwlK
Q
ijkl

4

√
φQiiiiφ

Q
kkkkφ

Q
llll, (58)

with each of the components on the right side of equation (24) estimated,

the co-kurtosis SQjmmm is acquired.
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D General Framework of Co-Moments

Suppose we have N assets and wish to determine the corresponding first three

co-moments of the asset returns, i.e. the covariance of asset i and j:

σi,j = E
[
(Ri − µi)(Rj − µj)

]
, (59)

the products of three returns, i.e. the co-skewness of asset i,j and k:

φi,j,k = E
[
(Ri − µi)(Rj − µj)(Rk − µk)

]
, (60)

and similarly, we have the products of four returns, i.e. the co-kurtosis of asset i,

j, k and l:

ψi,j,k,l = E
[
(Ri − µi)(Rj − µj)(Rk − µk)(Rl − µl)

]
. (61)

We can also rewrite previous expression into matrix style: N × N covariance

matrix Σ, N ×N2 co-skewness matrix Φ and N ×N3 co-kurtosis matrix Ψ of the

corresponding return vector R with mean µR:

Σ = E
[
(R− µR)(R− µR)′

]
(62)

Φ = E
[
(R−µR)(R−µR)′⊗(R−µR)′

]
Ψ = E

[
(R−µR)(R−µR)′⊗(R−µR)′⊗(R−µR)′

]
,

(63)

where ⊗ denotes the Kronecker product. For instance, if A is a M ×N matrix

and B is a p × q matrix, then the Kronecker product of A and B is the mp × nq

block matrix: 

A11B A12B ... A1nB

A21B A22B ... A2nB

. . . .

. . . .

Am1B Am2B ... AmnB
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Table 1: Number of Parameters
Number of Elements

sigma N(N+1)/2
phi N(N+1)(N+2)/6
psi N(N+1)(N+2)(N+3)/24

Total
N(N+1)/2+N(N+1)(N+2)/6

+N(N+1)(N+2)(N+3)/24
Total
N=30 46,345
N=100 4,598,025
N=500 2,656,615,125,000,000

Furthermore, as mentioned by Peterson and Boudt (2008), we have the property

that allow us to easily calculate the n-th portfolio/index return moment:

m2(W ) = E
[(
W ′(R− µR)

)2]
= w′Σw (64)

m3(w) = E
[(
W ′(R− µR)

)3]
= w′Φ(w ⊗ w) (65)

m4(w) = E
[(
W ′(R− µR)

)4]
= w′Ψ(w ⊗ w ⊗ w) (66)

As been pointed out by previous studies, the challenge of this method is to esti-

mate these co-moments/correlation. AS shown in Table , if we consider DJIA as

market proxy, and study its components, we need to estimate 46, 345 parameters

for each time period, which is quite acceptable. When we increase the number

of components to 100, for instance, S&P 100 (which is my case), we would face

4, 598, 025 parameters for each time period, under current hardware computing

power, this is still acceptable. However, it might be a problem if we want to apply

similar procedure to S&P 500 and its constituents.
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E Regression Methods for Benchmark Comparison

I use those classical asset pricing models in the literature as benchmarks to com-

pare the in-sample fitting performance, measured by squared error (SE) and R-

square/adj. R-square. The models are CAPM and regression based covariance-co-

skewness-co-kurtosis model (denote as regCCC, proposed by Christoffersen et. al

(2016)) and Fama-French three factor model.

E.1 CAPM Model

I use Fama-MacBeth two stage regression to estimate the CAPM model. It has

better explaining performance in the cross-sectional asset returns comparing to

one-stage regression model. At first stage, for each stock j among 100 index com-

ponents, I estimate the βj,t using moving window method based on following re-

gression. The rolling windows I use is three-year and five-year monthly.

Rj,t −Rf = αj + βj,t × (Rmkt,t −Rf ) + εj,t. (67)

Then regress all asset returns for each month (T ) against the betas to determine

the risk premium (Rmkt,T ). For j = 1 to 100

Rj,T − rf = αj + βj × (Rmkt,T − rf ) + εj,t. (68)

E.2 regCCC Model

Christoffersen et. al (2016) introduce this pricing model incorporating co-skewness

and co-kurtosis risk apart from covariance risk. I also use Fama-MacBeth two stage

regression to estimate this model. First, for each stock j, I estimate the market

beta, co-skewness beta and co-kurtosis beta using moving window method based

on following regression. The rolling windows I use is three-year and five-year
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monthly.

R̃j −Rf = cj + βMKT
j λMKT

t + βCOSKj λCOSKt + βCOKUj λCOKUt (69)

Where

λMKT
t = EPt (Rm,t+1)−Rf,t, (70)

λCOSKt = EPt (R2
m,t+1)− EQt (R2

m,t+1) (71)

λCOKUt = EPt (R3
m,t+1)− EQt (R3

m,t+1) (72)

Then regress all asset returns for each month (T ) against the betas to determine

the risk premium. For j = 1 to 100

Rj,T − rf = cj + βMKT
j λMKT

T + βCOSKj λCOSKT + βCOKUj λCOKUT (73)

The expected physical moments are approximated by realized ones, while the risk-

neutral moments are calculated based on model-free implied moments.

E.3 OiCCC model

OiCCC represents Option-implied covariance-co-skewness-co-kurtosis model. In-

stead of the estimating the betas based on historical moving window method. I

use option-implied information to construct these risk measures. Thus, they are

naturally forward-looking and time-varying. For a model in-sample fit testing, I

use the same method as the Fama-macBeth second stage regression to determine

the risk premiums:

Rj,T − rf = cj + βMKT
j λMKT

T + βCOSKj λCOSKT + βCOKUj λCOKUT , (74)

where the risk premium (λ) is defined as before.
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Table 2: Descriptive Statistic for Betas

Table 2 provides the summary statistics for market beta, co-skewness beta and

co-kurtosis beta. The sample period spans from August 2005 to November 2014.

For each month I compute three betas for all stock in the S&P100 index. The table

reports the time-series median of these statistic. Additional, since option-implied

method is able to capture the sudden change in the market, the ex-ante betas

are more volatile then the ones from regression-based method, their distribution

consequently is more skewed. Thus, I pool all the betas across time and stocks,

and compute the 5%, 20%, 40%, 60%, 80% and 95% observation.

RA=3 Market Risk Beta co-Skewness Beta co-Kurtosis Beta
median 1.08 0.02 -17.25

5% -3.65 -105.43 -6003.13
20% -0.68 -24.69 -1185.98
40% 0.63 -4.85 -179.87
60% 1.56 4.38 127.77
80% 3.22 21.64 966.19
95% 8.54 64.38 3518.31
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Table 3: Comparison with Benchmark Methods

Table 3 shows the comparison between my method OiCCC (Option implied Measures of covariance-

co-skewness-co-kurtosis risk) and other classical asset pricing models, CAPM3Y and CAPM5Y stand

for CAPM model with three-year and five-year monthly moving window, respectively. regCCC3Y and

regCCC5Y stand for regression based covariance-co-skewness-co-kurtosis with three-year and five-year

monthly moving window, respectively. The CAPM and regCCC model are estimated using Fama-MacBeth

two stage regression, I first use moving-window method to estimate the beta(s) for each stock, then a cross-

sectional regression is run to determine the risk premium for each period: Rj,T −rf = cj +βMKT
j λMKT

T +

βCOSK
j λCOSK

T + βCOKU
j λCOKU

T . The sample period range from 2005.08 to 2014.11, with 112 month

observation, cross-sectionally, we have 100 (S&P100 constituents, updated for each of the month) stocks

for each month. After the OLSregression estimation, we have a 112*100 matrix of squared errorforeach

method. Then for each month and each benchmark method, I compare the aggregate squared error

(distribution) with the one from OiCCC, to see whether these benchmark methods significantly (at 10%

level, t≥1.65) perform better/worse (measured by whether the MSE is higher or lower), and count the

frequency. Panel A reports the average mean square error (MSE) for monthly returns, average cross-

sectional R-square/adj. R-square and the frequencies that OiCCC outperforms the benchmark methods.

Panel B reports the frequency that all the three premium (covariance-co-skewness-co-kurtosis) estimates

are significant in the cross-sectional fit.

Panel A. Cross-Sectional Fit of Individual Stock Returns

OiCCC CAPM3Y CAPM5Y regCCC3Y regCCC5Y

MSE 0.0049 0.0054 0.0054 0.0053 0.0053
R-square 0.1284 0.0454 0.0449 0.0815 0.0781

adj. R-square 0.1012 0.0354 0.0352 0.0528 0.0493

f. better than OiCCC 0 0 1/112 1/112
f. worse than OiCCC 23/112 24/112 12/112 17/112

Panel B. Summary of the Regression Statistics

OiCCC regCCC3Y regCCC5Y

f. all three premiums are significant (10%) 41.1% 7.1% 7.1%
f. all three premiums are significant (5%) 34.8% 5.4% 6.3%
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Figure 1: Difference between Mean Squared Error

Figure 1 plots the comparison between my method OiCCC (Option implied
Measures of covariance-co-skewness-co-kurtosis risk) and other classical as-
set pricing models, CAPM3Y and CAPM5Y stand for CAPM model with
three-year and five-year monthly moving window, respectively. regCCC3Y

and regCCC5Y stand for regression based covariance-co-skewness-co-kurtosis
with three-year and five-year monthly moving window, respectively. The
CAPM and regCCC model are estimated using Fama-MacBeth two stage re-
gression, I first use moving-window method to estimate the beta(s) for each
stock, then a cross-sectional regression is run to determine the risk premium
for each period: Rj,T −rf = cj+βMKT

j λMKT
T +βCOSKj λCOSKT +βCOKUj λCOKUT .

The sample period range from 2005.08 to 2014.11, with 112 month observa-
tion, cross-sectionally, we have 100 (S&P100 constituents, updated for each
of the month) stocks for each month. After the OLSregression estimation,
we have a 112*100 matrix of squared errorforeach method. Then for each
month and each benchmark method, I compare the aggregate squared error
(distribution) with the one from OiCCC, to see whether these benchmark
methods significantly (at 10% level, t≥1.65) perform better/worse (measured
by whether the MSE is higher or lower).
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Table 4: Portfolio Fit Summary

I construct the following four portfolios: 1. portfolio sort by market beta; 2. portfolio sort by co-skewness
beta; 3. portfolio sort by co-kurtosis beta; 4. portfolio sort by aggregate risk exposure. Take 1st portfolio
(sort by market beta) as an example, for each month, I sort the stocks based on their option-implied
market beta, to form 20 portfolios. The first portfolio thereby contains the stocks with the lowest market
betas, and the last portfolio contains the stocks with the highest market betas. For each portfolio, each
month, and each methodology, I compute the equal-weighted expected portfolio risk measures (market
beta, co-skewness beta and co-kurtosis beta) and realized portfolio return over the next month. Then I
use cross-sectional regression to access the portfolio fit, measured by R-square (adj. R-square). The 4th

portfolio (sort by aggregate measures) is constructed differently. For each month, calculate the percentile
of ranking for each beta, aggregate risk measure (ARM) is then defined as follows:

ARM = percentile(βMKT )− percentile(βCOSK) + percentile(βCOKU ) (75)

Portfolio Fitting: Sort by βMKT

CAPM3Y CAPM5Y regCCC3Y regCCC5Y OiCCC

obervation 2800 2800 2800 2800 2800
MSE (%) 0.13 0.13 0.12 0.12 0.10

R-square (%) 8.50 8.72 19.43 18.49 25.94
adj. R-square (%) 4.53 4.75 7.92 6.85 15.36

Portfolio Fitting: Sort by βCOSK

CAPM3Y CAPM5Y regCCC3Y regCCC5Y OiCCC

obervation 2800 2800 2800 2800 2800
MSE 0.15 0.15 0.13 0.13 0.10

R-square (%) 8.2 8.09 17.94 17.59 27.81
adj. R-square (%) 4.2 4.09 6.22 5.81 17.50

Portfolio Fitting: Sort by βCOKU

CAPM3Y CAPM5Y regCCC3Y regCCC5Y OiCCC

observation 2800 2800 2800 2800 2800
MSE 0.14 0.14 0.12 0.12 0.10

R-square 9.25 9.51 18.89 20.04 26.92
adj. R-square 5.30 5.57 7.30 8.61 16.48

Portfolio Fitting: Sort by ARM
CAPM3Y CAPM5Y regCCC3Y regCCC5Y OiCCC

observation 2800 2800 2800 2800 2800
MSE 0.14 0.14 0.12 0.13 0.10

R-square 8.65 9.10 19.62 18.11 27.47
adj. R-square 4.68 5.14 8.14 6.41 17.11
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Figure 2: Scatter Plot between realized return and fitted-return

Figure 2 shows the scatter plot between realized portfolio returns and fitted-
returns. For each portfolio, each month, I compute the equal-weighted ex-
pected portfolio risk measures (market beta, co-skewness beta and co-kurtosis
beta) and realized portfolio return over the next month. Then I use cross-
sectional regression to access the portfolio fit. The sample period is from
August 2005 to November 2014.
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Table 5: Price of Market Risk, Co-Skewness and Co-Kurtosis Risk

The table provides descriptive statistics for the market risk premium, the price

of co-skewness and co-kurtosis risk, with different risk-aversion (RA) coefficient.

The data are monthly and the mean and the standard deviation are reported in

percentages. The risk premiums are estimated using the ex-ante option implied

method of Chalamandaris and Rompolis (2016). The risk-neutral moments are

estimated using the model-free approach in Bakshi and Madan (2000). The sample

period is from August 2005 to November 2014.

RA=3 Market Risk co-skewness Risk co-Kurtosis Risk
mean 0.8192 -0.0183 0.0022
std 1.0783 0.0382 0.0031

skew 3.6101 -5.1791 1.9146
kurt 18.0276 33.0156 6.7769

RA=4 Market Risk co-skewness Risk co-Kurtosis Risk
mean 1.0819 -0.0233 0.0029
std 1.4164 0.0522 0.0039

skew 3.5824 -5.3883 1.9487
kurt 17.7942 34.9828 6.7542

RA=5 Market Risk co-skewness Risk co-Kurtosis Risk
mean 1.3408 -0.0279 0.0036
std 1.7449 0.0679 0.0048

skew 3.5505 -5.5785 2.0111
kurt 17.5307 36.8091 6.7983
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The Figure 3, Figure 4 and Figure 5 plot the time series for the conditional
market risk premium, price of the co-skewness and co-kurtosis risk, with
different risk-aversion (RA) coefficient. The data are monthly and the mean
and the standard deviation are reported in percentages. The risk premiums
are estimated using the ex-ante option implied method of Chalamandaris
and Rompolis (2016). The risk-neutral moments are estimated using the
model-free approach in Bakshi and Madan (2000). The sample period is
from August 2005 to November 2014.

Figure 3: Market Risk Premium

Figure 4: co-Skewness Risk Premium

Figure 5: co-Kurtosis Risk Premium

50



Table 6: Out-of-Sample Portfolio return forecast
The betas are estimated by the option implied method introduced in this paper.
The risk premiums are estimated based on the option-implied method of Chala-
mandaris and Rompolis (2016). I sort the stocks according to their aggregate risk
exposure. I then compute the equal-weighted expected portfolio betas (market
beta, co-skewness beta and co-kurtosis beta) and multiply the price of the corre-
sponding risk to get expected portfolio return for each month. I sort the portfolios
into quintiles based on their expected return for each month, and compute the
equal-weighted mean realized return for each quintile across all the time. The first
quintile therefore contains the portfolios with highest expected returns, and the
last one contains the portfolios with lowest expected returns. Additionally, I also
use regression based method to estimate betas for CCC (covariance-co-skewness-
co-kurtosis model), denote as regCCC, as a benchmark. The sample period is from
August 2005 to November 2014.

RA=3

Quintile OiCCC regCCC
1 0.1054 0.0618
2 0.0674 0.0593
3 0.0553 0.0525
4 0.0481 0.0770
5 0.0108 0.0346

1-5 0.0945 0.0273
p-value 0.0064 0.4608

RA=4

Quintile OiCCC regCCC
1 0.1063 0.0618
2 0.0707 0.0687
3 0.0592 0.0441
4 0.0442 0.0760
5 0.0066 0.0346

1-5 0.0996 0.0273
p-value 0.0043 0.4536

RA=5
Quintile OiCCC regCCC

1 0.1130 0.0657
2 0.0841 0.0595
3 0.0510 0.0475
4 0.0358 0.0765
5 0.0031 0.0359

1-5 0.1099 0.0298
p-value 0.0017 0.4112
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